Previous |  Up |  Next

Article

Title: Powers and alternative laws (English)
Author: Ormes, Nicholas
Author: Vojtěchovský, Petr
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 1
Year: 2007
Pages: 25-40
.
Category: math
.
Summary: A groupoid is alternative if it satisfies the alternative laws $x(xy)=(xx)y$ and $x(yy)=(xy)y$. These laws induce four partial maps on $\Bbb N^+ \times \Bbb N^+$ $$ (r,\,s)\mapsto (2r,\,s-r),\quad (r-s,\,2s),\quad (r/2,\,s+r/2),\quad (r+s/2,\,s/2), $$ that taken together form a dynamical system. We describe the orbits of this dynamical system, which allows us to show that $n$th powers in a free alternative groupoid on one generator are well-defined if and only if $n\le 5$. We then discuss some number theoretical properties of the orbits, and the existence of alternative loops without two-sided inverses. (English)
Keyword: alternative laws
Keyword: alternative groupoid
Keyword: powers
Keyword: dynamical system
Keyword: alternative loop
Keyword: two-sided inverse
MSC: 20N02
MSC: 20N05
MSC: 37B10
MSC: 37E99
idZBL: Zbl 1174.20343
idMR: MR2338827
.
Date available: 2009-05-05T17:01:08Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119636
.
Reference: [1] Burton D.M.: Elementary Number Theory.third edition, Wm. C. Brown Publishers, 1994. Zbl 1084.11001, MR 0990017
Reference: [2] Dehornoy P.: The structure group for the associative identity.J. Pure Appl. Algebra 111 (1996), 59-82. MR 1394345
Reference: [3] Dehornoy P.: Braids and Self-Distributivity.Progress in Mathematics 192, Birkhäuser, Basel, 2000. Zbl 0958.20033, MR 1778150
Reference: [4] Dehornoy P.: The fine structure of LD-equivalence.Adv. Math. 155 (2000), 264-316. Zbl 0974.20048, MR 1794713
Reference: [5] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Sigma Series in Pure Mathematics 7, Heldermann, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [6] Smith W.D.: Inclusions among diassociativity-related loop properties.preprint.
Reference: [7] van Lint J.H., Wilson R.M.: A Course in Combinatorics.Cambridge University Press, Cambridge, 1992. Zbl 0980.05001, MR 1207813
Reference: [8] Wirsching G.J.: The dynamical system generated by the $3n+1$ function.Lecture Notes in Mathematics 1681, Springer, Berlin, 1998. Zbl 0892.11002, MR 1612686
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-1_3.pdf 273.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo