Previous |  Up |  Next

Article

Title: On semiregular digraphs of the congruence $x^k\equiv y \pmod n$ (English)
Author: Somer, Lawrence
Author: Křížek, Michal
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 1
Year: 2007
Pages: 41-58
.
Category: math
.
Summary: We assign to each pair of positive integers $n$ and $k\geq 2$ a digraph $G(n,k)$ whose set of vertices is $H=\{0,1,\dots,n-1\}$ and for which there is a directed edge from $a\in H$ to $b\in H$ if $a^k\equiv b\pmod n$. The digraph $G(n,k)$ is semiregular if there exists a positive integer $d$ such that each vertex of the digraph has indegree $d$ or 0. Generalizing earlier results of the authors for the case in which $k=2$, we characterize all semiregular digraphs $G(n,k)$ when $k\geq 2$ is arbitrary. (English)
Keyword: Chinese remainder theorem
Keyword: congruence
Keyword: group theory
Keyword: dynamical system
Keyword: regular and semiregular digraphs
MSC: 05C20
MSC: 05C25
MSC: 11A07
MSC: 11A15
MSC: 20K01
idZBL: Zbl 1174.05058
idMR: MR2338828
.
Date available: 2009-05-05T17:01:12Z
Last updated: 2012-04-30
Stable URL: http://hdl.handle.net/10338.dmlcz/119637
.
Reference: [1] Křížek M., Luca F., Somer L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry.CMS Books in Mathematics, vol. 9, Springer New York (2001). Zbl 1010.11002, MR 1866957
Reference: [2] Lucheta C., Miller E., Reiter C.: Digraphs from powers modulo $p$.Fibonacci Quart. (1996), 34 226-239. Zbl 0855.05067, MR 1390409
Reference: [3] Niven I., Zuckerman H.S., Montgomery H.L.: An Introduction to the Theory of Numbers.fifth edition, John Wiley & Sons, New York (1991). Zbl 0742.11001, MR 1083765
Reference: [4] Somer L., Křížek M.: On a connection of number theory with graph theory.Czechoslovak Math. J. 54 (2004), 465-485. Zbl 1080.11004, MR 2059267
Reference: [5] Somer L., Křížek M.: Structure of digraphs associated with quadratic congruences with composite moduli.Discrete Math. 306 (2006), 2174-2185. Zbl 1161.05323, MR 2255611
Reference: [6] Wilson B.: Power digraphs modulo $n$.Fibonacci Quart. (1998), 36 229-239. Zbl 0936.05049, MR 1627384
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-1_4.pdf 341.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo