Previous |  Up |  Next

Article

Title: Eberlein spaces of finite metrizability number (English)
Author: Juhász, I.
Author: Szentmiklóssy, Z.
Author: Szymański, A.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 291-301
.
Category: math
.
Summary: Yakovlev [{\it On bicompacta in $\Sigma $-products and related spaces\/}, Comment. Math. Univ. Carolin. {\bf 21.2} (1980), 263--283] showed that any Eberlein compactum is hereditarily $\sigma $-metacompact. We show that this property actually characterizes Eberlein compacta among compact spaces of finite metrizability number. Uniformly Eberlein compacta and Corson compacta of finite metrizability number can be characterized in an analogous way. (English)
Keyword: metrizability number
Keyword: Eberlein compactum
Keyword: separating family
MSC: 54A15
MSC: 54A38
MSC: 54D10
MSC: 54D20
MSC: 54D30
MSC: 54E45
idZBL: Zbl 1199.54152
idMR: MR2338097
.
Date available: 2009-05-05T17:03:01Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119659
.
Reference: [1] Amir D., Lindenstrauss J.: The structure of weakly compact sets in Banach spaces.Ann. of Math. 88 (1968), 35-46. Zbl 0164.14903, MR 0228983
Reference: [2] Benyamini Y., Rudin M.E., Wage M.: Continuous images of weakly compact subsets of Banach spaces.Pacific J. Math. 70.2 (1977), 309-324. Zbl 0374.46011, MR 0625889
Reference: [3] Benyamini Y., Starbird T.: Embedding weakly compact sets into Hilbert space.Israel J. Math. 23 (1976), 137-141. Zbl 0325.46023, MR 0397372
Reference: [4] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1988. Zbl 0684.54001, MR 1039321
Reference: [5] Gruenhage G.: Covering properties on $X^{2}\backslash \Delta $, $W$-sets, and compact subsets of $\Sigma $-products.Topology Appl. 17 (1984), 287-304. Zbl 0547.54016, MR 0752278
Reference: [6] Ismail M., Szymanski A.: On locally compact Hausdorff spaces with finite metrizability number.Topology Appl. 114.3 (2001), 285-293. Zbl 1012.54002, MR 1838327
Reference: [7] Juhász I.: Cardinal Functions in Topology - Ten Years After.Mathematical Centre Tracts 123, Amsterdam, 1983. MR 0576927
Reference: [8] Lindenstrauss J.: Weakly compact sets, their topological properties and the Banach spaces they generate.Annals of Math. Studies 69, Princeton University Press, Princeton, 1972, pp.235-273. Zbl 0232.46019, MR 0417761
Reference: [9] Michael E., Rudin M.E.: A note on Eberlein compacts.Pacific J. Math. 72.2 (1977), 487-495. Zbl 0345.54020, MR 0478092
Reference: [10] Michael E., Rudin M.E.: Another note on Eberlein compacts.Pacific J. Math. 72.2 (1977), 497-499. Zbl 0344.54018, MR 0478093
Reference: [11] Rosenthal H.P.: The heredity problem for weakly compactly generated Banach spaces.Compositio Math. 28 (1974), 83-111. Zbl 0298.46013, MR 0417762
Reference: [12] Yakovlev N.N.: On bicompacta in $\Sigma $-products and related spaces.Comment. Math. Univ. Carolin. 21.2 (1980), 263-283. Zbl 0436.54019, MR 0580682
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_11.pdf 232.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo