Previous |  Up |  Next

Article

Title: Approximations by regular sets and Wiener solutions in metric spaces (English)
Author: Björn, Anders
Author: Björn, Jana
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 2
Year: 2007
Pages: 343-355
.
Category: math
.
Summary: Let $X$ be a complete metric space equipped with a doubling Borel measure supporting a weak Poincaré inequality. We show that open subsets of $X$ can be approximated by regular sets. This has applications in nonlinear potential theory on metric spaces. In particular it makes it possible to define Wiener solutions of the Dirichlet problem for $p$-harmonic functions and to show that they coincide with three other notions of generalized solutions. (English)
Keyword: axiomatic potential theory
Keyword: capacity
Keyword: corkscrew
Keyword: Dirichlet problem
Keyword: doubling
Keyword: metric space
Keyword: nonlinear
Keyword: $p$-harmonic
Keyword: Poincaré inequality
Keyword: quasiharmonic
Keyword: quasisuperharmonic
Keyword: quasiminimizer
Keyword: quasisuperminimizer
Keyword: regular set
Keyword: Wiener solution
MSC: 31C45
MSC: 31D05
MSC: 35J70
MSC: 49J27
idZBL: Zbl 1199.31024
idMR: MR2338101
.
Date available: 2009-05-05T17:03:21Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119663
.
Reference: [1] Bauer H.: Harmonische Räume und ihre Potentialtheorie.Lecture Notes in Math. 22, Springer, Berlin-New York, 1966. Zbl 0142.38402, MR 0210916
Reference: [2] Björn A.: Characterizations of $p$-superharmonic functions on metric spaces.Studia Math. 169 (2005), 45-62. Zbl 1079.31006, MR 2139641
Reference: [3] Björn A.: A weak Kellogg property for quasiminimizers.Comment. Math. Helv. 81 (2006), 809-825. Zbl 1105.31007, MR 2271223
Reference: [4] Björn A., Björn J.: Boundary regularity for $p$-harmonic functions and solutions of the obstacle problem.J. Math. Soc. Japan 58 (2006), 1211-1232. Zbl 1211.35109, MR 2276190
Reference: [5] Björn A., Björn J., Shanmugalingam N.: The Dirichlet problem for $p$-harmonic functions on metric spaces.J. Reine Angew. Math. 556 (2003), 173-203. Zbl 1018.31004, MR 1971145
Reference: [6] Björn A., Björn J., Shanmugalingam N.: The Perron method for $p$-harmonic functions.J. Differential Equations 195 (2003), 398-429. Zbl 1039.35033, MR 2016818
Reference: [7] Björn J.: Boundary continuity for quasiminimizers on metric spaces.Illinois J. Math. 46 (2002), 383-403. Zbl 1026.49029, MR 1936925
Reference: [8] Björn J., MacManus P., Shanmugalingam N.: Fat sets and pointwise boundary estimates for $p$-harmonic functions in metric spaces.J. Anal. Math. 85 (2001), 339-369. Zbl 1003.31004, MR 1869615
Reference: [9] Björn J., Shanmugalingam N.: Poincaré inequalities, uniform domains and extension properties for Newton-Sobolev functions in metric spaces.to appear in J. Math. Anal. Appl. MR 2319654
Reference: [10] Cheeger J.: Differentiability of Lipschitz functions on metric spaces.Geom. Funct. Anal. 9 (1999), 428-517. MR 1708448
Reference: [11] Hajłasz, P., Koskela P.: Sobolev met Poincaré.Mem. Amer. Math. Soc. 145 (2000). MR 1683160
Reference: [12] Heinonen J., Kilpeläinen T., Martio O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford Univ. Press, Oxford, 1993. MR 1207810
Reference: [13] Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry.Acta Math. 181 (1998), 1-61. Zbl 0915.30018, MR 1654771
Reference: [14] Keith S., Zhong X.: The Poincaré inequality is an open ended condition.preprint, Jyväskylä, 2003. MR 2415381
Reference: [15] Kilpeläinen T., Malý J.: The Wiener test and potential estimates for quasilinear elliptic equations.Acta Math. 172 (1994), 137-161. MR 1264000
Reference: [16] Kinnunen J., Martio O.: Nonlinear potential theory on metric spaces.Illinois Math. J. 46 (2002), 857-883. MR 1951245
Reference: [17] Kinnunen J., Martio O.: Potential theory of quasiminimizers.Ann. Acad. Sci. Fenn. Math. 28 (2003), 459-490. Zbl 1035.31007, MR 1996447
Reference: [18] Lehtola P.: An axiomatic approach to nonlinear potential theory.Ann. Acad. Sci. Fenn. Ser. A I Math. Dissertationes 62 (1986), 1-40. Zbl 0695.31014, MR 0879323
Reference: [19] Maz'ya V.G.: On the continuity at a boundary point of solutions of quasi-linear elliptic equations.Vestnik Leningrad. Univ. Mat. Mekh. Astronom. 25:13 (1970), 42-55 (Russian); English transl.: Vestnik Leningrad Univ. Math. 3 (1976), 225-242. MR 0274948
Reference: [20] Perron O.: Eine neue Behandlung der ersten Randwertaufgabe für $\Delta u=0$.Math. Z. 18 (1923), 42-54. MR 1544619
Reference: [21] Shanmugalingam N.: Newtonian spaces: An extension of Sobolev spaces to metric measure spaces.Rev. Mat. Iberoamericana 16 (2000), 243-279. Zbl 0974.46038, MR 1809341
Reference: [22] Shanmugalingam N.: Harmonic functions on metric spaces.Illinois J. Math. 45 (2001), 1021-1050. Zbl 0989.31003, MR 1879250
Reference: [23] Shanmugalingam N.: Some convergence results for $p$-harmonic functions on metric measure spaces.Proc. London Math. Soc. 87 (2003), 226-246. Zbl 1034.31006, MR 1978575
Reference: [24] Wiener N.: Certain notions in potential theory.J. Math. Phys. 3 (1924), 24-51.
Reference: [25] Wiener N.: The Dirichlet problem.J. Math. Phys. 3 (1924), 127-146.
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-2_15.pdf 248.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo