Title:
|
A homogeneous space of point-countable but not of countable type (English) |
Author:
|
Basile, Désirée |
Author:
|
van Mill, Jan |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
48 |
Issue:
|
3 |
Year:
|
2007 |
Pages:
|
459-463 |
. |
Category:
|
math |
. |
Summary:
|
We construct an example of a homogeneous space which is of point-countable but not of countable type. This shows that a result of Pasynkov cannot be generalized from topological groups to homogeneous spaces. (English) |
Keyword:
|
homogeneous |
Keyword:
|
coset space |
Keyword:
|
topological group |
MSC:
|
54D40 |
MSC:
|
54D99 |
idZBL:
|
Zbl 1199.54159 |
idMR:
|
MR2374127 |
. |
Date available:
|
2009-05-05T17:04:06Z |
Last updated:
|
2012-05-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119672 |
. |
Reference:
|
[1] Effros E.G.: Transformation groups and $C^*$-algebras.Annals of Math. 81 (1965), 38-55. Zbl 0152.33203, MR 0174987 |
Reference:
|
[2] van Engelen F., van Mill J.: Borel sets in compact spaces: some Hurewicz-type theorems.Fund. Math. 124 (1984), 271-286. Zbl 0559.54034, MR 0774518 |
Reference:
|
[3] Filippov V.V.: The perfect image of a paracompact feathery space Dokl. Akad. Nauk SSSR.176 (1967), 533-535. MR 0222853 |
Reference:
|
[4] Ford L.R., Jr.: Homeomorphism groups and coset spaces.Trans. Amer. Math. Soc. 77 (1954), 490-497. Zbl 0058.17302, MR 0066636 |
Reference:
|
[5] Henriksen M., Isbell J.R.: Some properties of compactifications.Duke Math. J. 25 (1957), 83-105. MR 0096196 |
Reference:
|
[6] Ishii T.: On closed mappings and $M$-spaces. I, II.Proc. Japan Acad. 43 (1967), 752-756; 757-761. MR 0222854 |
Reference:
|
[7] van Mill J.: A homogeneous Eberlein compact space which is not metrizable.Pacific J. Math. 101 (1982), 141-146. Zbl 0495.54020, MR 0671846 |
Reference:
|
[8] van Mill J.: Homogeneous subsets of the real line.Compositio Math. 45 (1982), 3-13. Zbl 0528.54034, MR 0660152 |
Reference:
|
[9] Pasynkov B.A.: Almost-metrizable topological groups.Dokl. Akad. Nauk SSSR 161 (1965), 281-284. Zbl 0132.27802, MR 0204565 |
Reference:
|
[10] Ungar G.S.: On all kinds of homogeneous spaces.Trans. Amer. Math. Soc. 212 (1975), 393-400. Zbl 0318.54037, MR 0385825 |
. |