Previous |  Up |  Next

Article

Title: A homogeneous space of point-countable but not of countable type (English)
Author: Basile, Désirée
Author: van Mill, Jan
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 3
Year: 2007
Pages: 459-463
.
Category: math
.
Summary: We construct an example of a homogeneous space which is of point-countable but not of countable type. This shows that a result of Pasynkov cannot be generalized from topological groups to homogeneous spaces. (English)
Keyword: homogeneous
Keyword: coset space
Keyword: topological group
MSC: 54D40
MSC: 54D99
idZBL: Zbl 1199.54159
idMR: MR2374127
.
Date available: 2009-05-05T17:04:06Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119672
.
Reference: [1] Effros E.G.: Transformation groups and $C^*$-algebras.Annals of Math. 81 (1965), 38-55. Zbl 0152.33203, MR 0174987
Reference: [2] van Engelen F., van Mill J.: Borel sets in compact spaces: some Hurewicz-type theorems.Fund. Math. 124 (1984), 271-286. Zbl 0559.54034, MR 0774518
Reference: [3] Filippov V.V.: The perfect image of a paracompact feathery space Dokl. Akad. Nauk SSSR.176 (1967), 533-535. MR 0222853
Reference: [4] Ford L.R., Jr.: Homeomorphism groups and coset spaces.Trans. Amer. Math. Soc. 77 (1954), 490-497. Zbl 0058.17302, MR 0066636
Reference: [5] Henriksen M., Isbell J.R.: Some properties of compactifications.Duke Math. J. 25 (1957), 83-105. MR 0096196
Reference: [6] Ishii T.: On closed mappings and $M$-spaces. I, II.Proc. Japan Acad. 43 (1967), 752-756; 757-761. MR 0222854
Reference: [7] van Mill J.: A homogeneous Eberlein compact space which is not metrizable.Pacific J. Math. 101 (1982), 141-146. Zbl 0495.54020, MR 0671846
Reference: [8] van Mill J.: Homogeneous subsets of the real line.Compositio Math. 45 (1982), 3-13. Zbl 0528.54034, MR 0660152
Reference: [9] Pasynkov B.A.: Almost-metrizable topological groups.Dokl. Akad. Nauk SSSR 161 (1965), 281-284. Zbl 0132.27802, MR 0204565
Reference: [10] Ungar G.S.: On all kinds of homogeneous spaces.Trans. Amer. Math. Soc. 212 (1975), 393-400. Zbl 0318.54037, MR 0385825
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-3_7.pdf 177.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo