Previous |  Up |  Next

Article

Title: Ultrafilter-limit points in metric dynamical systems (English)
Author: García-Ferreira, S.
Author: Sanchis, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 3
Year: 2007
Pages: 465-485
.
Category: math
.
Summary: Given a free ultrafilter $p$ on $\Bbb N$ and a space $X$, we say that $x\in X$ is the $p$-limit point of a sequence $(x_n)_{n\in \Bbb N}$ in $X$ (in symbols, $x = p$-$\lim_{n\to \infty}x_n$) if for every neighborhood $V$ of $x$, $\{n\in \Bbb N : x_n\in V\}\in p$. By using $p$-limit points from a suitable metric space, we characterize the selective ultrafilters on $\Bbb N$ and the $P$-points of $\Bbb N^* = \beta (\Bbb N)\setminus \Bbb N$. In this paper, we only consider dynamical systems $(X,f)$, where $X$ is a compact metric space. For a free ultrafilter $p$ on $\Bbb N^*$, the function $f^p: X\to X$ is defined by $f^p(x) = p$-$\lim_{n\to \infty}f^n(x)$ for each $x\in X$. These functions are not continuous in general. For a dynamical system $(X,f)$, where $X$ is a compact metric space, the following statements are shown: 1. If $X$ is countable, $p\in \Bbb N^*$ is a $P$-point and $f^p$ is continuous at $x\in X$, then there is $A\in p$ such that $f^q$ is continuous at $x$, for every $q\in A^*$. 2. Let $p\in \Bbb N^*$. If the family $\{f^{p+n} : n\in \Bbb N\}$ is uniformly equicontinuous at $x\in X$, then $f^{p+q}$ is continuous at $x$, for all $q\in \beta (\Bbb N)$. 3. Let us consider the function $F: \Bbb N^* \times X\to X$ given by $F(p,x) = f^p(x)$, for every $(p,x)\in \Bbb N^* \times X$. Then, the following conditions are equivalent. • $f^p$ is continuous on $X$, for every $p\in \Bbb N^*$. • There is a dense $G_\delta$-subset $D$ of $\Bbb N^*$ such that $F|_{D \times X}$ is continuous. • There is a dense subset $D$ of $\Bbb N^*$ such that $F|_{D \times X}$ is continuous. (English)
Keyword: ultrafilter
Keyword: $P$-limit point
Keyword: dynamical system
Keyword: selective ultrafilter
Keyword: $P$-point
Keyword: compact metric
MSC: 22A99
MSC: 54C20
MSC: 54D80
MSC: 54G20
MSC: 54H11
MSC: 54H20
idZBL: Zbl 1199.54194
idMR: MR2374128
.
Date available: 2009-05-05T17:04:11Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119673
.
Reference: [1] Akin E.: Recurrence in Topological Dynamics. Furstenberg Families and Ellis Actions.The University Series in Mathematics, Plenum Press, New York, 1997. Zbl 0919.54033, MR 1467479
Reference: [2] Arkhangel'skii A.V.: Topological Function Spaces.Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers, Dordrecht, 1992. MR 1144519
Reference: [3] Auslander J., Furstenberg H.: Product recurrence and distal points.Trans. Amer. Math. Soc. 343 (1994), 221-232. Zbl 0801.54031, MR 1170562
Reference: [4] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697
Reference: [5] Blass A.: Ultrafilters: where topological dynamics = algebra = combinatorics.Topology Proc. 18 (1993), 33-56. Zbl 0856.54042, MR 1305122
Reference: [6] Blass A., Shelah S.: There may be simple $P_{\aleph_1}$- and $P_{\aleph_2}$-points and the Rudin-Keisler ordering may be downward directed.Ann. Pure Appl. Logic 33 (1987), 3 213-243. MR 0879489
Reference: [7] Comfort W., Negrepontis S.: The Theory of Ultrafilters.Springer, Berlin, 1974. Zbl 0298.02004, MR 0396267
Reference: [8] Engelking R.: General Topology.Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [9] Furstenberg H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.Princeton University Press, Princeton, 1981. Zbl 0459.28023, MR 0603625
Reference: [10] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics, No. 43, Springer, New York-Heidelberg, 1976. Zbl 0327.46040, MR 0407579
Reference: [11] Hindman N., Strauss D.: Algebra in the Stone-Čech Compactification.Walter de Gruyter, Berlin, 1998. Zbl 0918.22001, MR 1642231
Reference: [12] Namioka I.: Separate continuity and joint continuity.Pacific J. Math. 51 (1974), 515-531. Zbl 0294.54010, MR 0370466
Reference: [13] Rudin W.: Homogeneity problems in the theory of Čech compactifications.Duke Math. J. 23 (1956), 409-419. Zbl 0073.39602, MR 0080902
Reference: [14] Sanchis M.: Continuous functions on locally pseudocompact groups.Topology Appl. 86 (1998), 5-23. Zbl 0922.22001, MR 1619340
Reference: [15] Whitehead J.H.C.: A note on a theorem due to Borsuk.Bull. Amer. Math. Soc. 54 (1948), 1125-1132. MR 0029503
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-3_8.pdf 322.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo