Title:
|
Ultrafilter-limit points in metric dynamical systems (English) |
Author:
|
García-Ferreira, S. |
Author:
|
Sanchis, M. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
48 |
Issue:
|
3 |
Year:
|
2007 |
Pages:
|
465-485 |
. |
Category:
|
math |
. |
Summary:
|
Given a free ultrafilter $p$ on $\Bbb N$ and a space $X$, we say that $x\in X$ is the $p$-limit point of a sequence $(x_n)_{n\in \Bbb N}$ in $X$ (in symbols, $x = p$-$\lim_{n\to \infty}x_n$) if for every neighborhood $V$ of $x$, $\{n\in \Bbb N : x_n\in V\}\in p$. By using $p$-limit points from a suitable metric space, we characterize the selective ultrafilters on $\Bbb N$ and the $P$-points of $\Bbb N^* = \beta (\Bbb N)\setminus \Bbb N$. In this paper, we only consider dynamical systems $(X,f)$, where $X$ is a compact metric space. For a free ultrafilter $p$ on $\Bbb N^*$, the function $f^p: X\to X$ is defined by $f^p(x) = p$-$\lim_{n\to \infty}f^n(x)$ for each $x\in X$. These functions are not continuous in general. For a dynamical system $(X,f)$, where $X$ is a compact metric space, the following statements are shown: 1. If $X$ is countable, $p\in \Bbb N^*$ is a $P$-point and $f^p$ is continuous at $x\in X$, then there is $A\in p$ such that $f^q$ is continuous at $x$, for every $q\in A^*$. 2. Let $p\in \Bbb N^*$. If the family $\{f^{p+n} : n\in \Bbb N\}$ is uniformly equicontinuous at $x\in X$, then $f^{p+q}$ is continuous at $x$, for all $q\in \beta (\Bbb N)$. 3. Let us consider the function $F: \Bbb N^* \times X\to X$ given by $F(p,x) = f^p(x)$, for every $(p,x)\in \Bbb N^* \times X$. Then, the following conditions are equivalent. • $f^p$ is continuous on $X$, for every $p\in \Bbb N^*$. • There is a dense $G_\delta$-subset $D$ of $\Bbb N^*$ such that $F|_{D \times X}$ is continuous. • There is a dense subset $D$ of $\Bbb N^*$ such that $F|_{D \times X}$ is continuous. (English) |
Keyword:
|
ultrafilter |
Keyword:
|
$P$-limit point |
Keyword:
|
dynamical system |
Keyword:
|
selective ultrafilter |
Keyword:
|
$P$-point |
Keyword:
|
compact metric |
MSC:
|
22A99 |
MSC:
|
54C20 |
MSC:
|
54D80 |
MSC:
|
54G20 |
MSC:
|
54H11 |
MSC:
|
54H20 |
idZBL:
|
Zbl 1199.54194 |
idMR:
|
MR2374128 |
. |
Date available:
|
2009-05-05T17:04:11Z |
Last updated:
|
2012-05-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119673 |
. |
Reference:
|
[1] Akin E.: Recurrence in Topological Dynamics. Furstenberg Families and Ellis Actions.The University Series in Mathematics, Plenum Press, New York, 1997. Zbl 0919.54033, MR 1467479 |
Reference:
|
[2] Arkhangel'skii A.V.: Topological Function Spaces.Mathematics and its Applications (Soviet Series), vol. 78, Kluwer Academic Publishers, Dordrecht, 1992. MR 1144519 |
Reference:
|
[3] Auslander J., Furstenberg H.: Product recurrence and distal points.Trans. Amer. Math. Soc. 343 (1994), 221-232. Zbl 0801.54031, MR 1170562 |
Reference:
|
[4] Bernstein A.R.: A new kind of compactness for topological spaces.Fund. Math. 66 (1970), 185-193. Zbl 0198.55401, MR 0251697 |
Reference:
|
[5] Blass A.: Ultrafilters: where topological dynamics = algebra = combinatorics.Topology Proc. 18 (1993), 33-56. Zbl 0856.54042, MR 1305122 |
Reference:
|
[6] Blass A., Shelah S.: There may be simple $P_{\aleph_1}$- and $P_{\aleph_2}$-points and the Rudin-Keisler ordering may be downward directed.Ann. Pure Appl. Logic 33 (1987), 3 213-243. MR 0879489 |
Reference:
|
[7] Comfort W., Negrepontis S.: The Theory of Ultrafilters.Springer, Berlin, 1974. Zbl 0298.02004, MR 0396267 |
Reference:
|
[8] Engelking R.: General Topology.Sigma Series in Pure Mathematics, Vol. 6, Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[9] Furstenberg H.: Recurrence in Ergodic Theory and Combinatorial Number Theory.Princeton University Press, Princeton, 1981. Zbl 0459.28023, MR 0603625 |
Reference:
|
[10] Gillman L., Jerison M.: Rings of Continuous Functions.Graduate Texts in Mathematics, No. 43, Springer, New York-Heidelberg, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[11] Hindman N., Strauss D.: Algebra in the Stone-Čech Compactification.Walter de Gruyter, Berlin, 1998. Zbl 0918.22001, MR 1642231 |
Reference:
|
[12] Namioka I.: Separate continuity and joint continuity.Pacific J. Math. 51 (1974), 515-531. Zbl 0294.54010, MR 0370466 |
Reference:
|
[13] Rudin W.: Homogeneity problems in the theory of Čech compactifications.Duke Math. J. 23 (1956), 409-419. Zbl 0073.39602, MR 0080902 |
Reference:
|
[14] Sanchis M.: Continuous functions on locally pseudocompact groups.Topology Appl. 86 (1998), 5-23. Zbl 0922.22001, MR 1619340 |
Reference:
|
[15] Whitehead J.H.C.: A note on a theorem due to Borsuk.Bull. Amer. Math. Soc. 54 (1948), 1125-1132. MR 0029503 |
. |