Previous |  Up |  Next

Article

Title: SP-scattered spaces; a new generalization of scattered spaces (English)
Author: Henriksen, M.
Author: Raphael, R.
Author: Woods, R. G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 3
Year: 2007
Pages: 487-505
.
Category: math
.
Summary: The set of isolated points (resp. $P$-points) of a Tychonoff space $X$ is denoted by $\operatorname{Is}(X)$ (resp. $P(X))$. Recall that $X$ is said to be {\it scattered\/} if $\operatorname{Is}(A)\neq \varnothing $ whenever $\varnothing \neq A\subset X$. If instead we require only that $P(A)$ has nonempty interior whenever $\varnothing \neq A\subset X$, we say that $X$ is {\it SP-scattered\/}. Many theorems about scattered spaces hold or have analogs for {\it SP-scattered\/} spaces. For example, the union of a locally finite collection of SP-scattered spaces is SP-scattered. Some known theorems about Lindelöf or paracompact scattered spaces hold also in case the spaces are SP-scattered. If $X$ is a Lindelöf or a paracompact SP-scattered space, then so is its $P$-coreflection. Some results are given on when the product of two Lindelöf or paracompact spaces is Lindelöf or paracompact when at least one of the factors is SP-scattered. We relate our results to some on RG-spaces and $z$-dimension. (English)
Keyword: scattered spaces
Keyword: SP-scattered spaces
Keyword: CB-index
Keyword: sp-index
Keyword: $P$-points
Keyword: $P$-spaces
Keyword: strong $P$-points
Keyword: RG-spaces
Keyword: $z$-dimension
Keyword: locally finite
Keyword: Lindelöf spaces
Keyword: paracompact spaces
Keyword: $P$-coreflection
Keyword: $G_{\delta}$-topology
Keyword: product spaces
MSC: 54G10
MSC: 54G12
idZBL: Zbl 1199.54188
idMR: MR2374129
.
Date available: 2009-05-05T17:04:16Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119674
.
Reference: [A87] Alster K.: On spaces whose product with every Lindelöf space is Lindelöf.Colloq. Math. 54 (1987), 171-178. Zbl 0688.54013, MR 0948511
Reference: [A88] Alster K.: On the class of all spaces of weight not greater than $ømega_{1}$ whose Cartesian product with every Lindelöf space is Lindelöf.Fund. Math. 129 (1988), 133-140. MR 0959437
Reference: [A06] Alster K.: On the class of $ømega_{1}$-metrizable spaces whose product with every paracompact space is paracompact.Topology Appl. 153 (2006), 2508-2517. Zbl 1101.54012, MR 2243730
Reference: [AE72] Alster K., Engelking R.: Subparacompactness and product spaces.Bull. Acad. Polon. Acad. Sci. Sér. Math. Astronom. Phys. 20 (1972), 763-767. Zbl 0238.54018, MR 0313992
Reference: [B76] Blair R.: Spaces in which special sets are $z$-embedded.Canad. J. Math. 28 (1976), 673-690. Zbl 0359.54009, MR 0420542
Reference: [CN75] Comfort W.W., Negrepontis S.: Continuous Pseudometrics.Marcel Dekker, Inc., New York, 1975. Zbl 0306.54004, MR 0410618
Reference: [E89] Engelking R.: General Topology.Heldermann Verlag, Berlin, 1989. Zbl 0684.54001, MR 1039321
Reference: [G84] Gewand M.: The Lindelöf degree of scattered spaces and their products.J. Austral. Math. Soc. 37 (1984), 98-105. Zbl 0545.54014, MR 0742247
Reference: [GJ76] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [HRW02] Henriksen M., Raphael R., Woods R.G.: A minimal regular ring extension of $C(X)$.Fund. Math. 172 (2002), 1-17. Zbl 0995.46022, MR 1898399
Reference: [KR77] Kannan V., Rajagopalan M.: Scattered spaces II Illinois J. Math..21 (1977), 735-751. MR 0474180
Reference: [LR81] Levy R., Rice M.: Normal $P$-spaces and the $G_{\delta}$-topology.Colloq. Math. 44 (1981), 227-240. Zbl 0496.54034, MR 0652582
Reference: [MRW72] Mack J., Rayburn M., Woods R.G.: Local topological properties and one point extensions.Canad. J. Math. 24 (1972), 338-348. Zbl 0242.54019, MR 0295297
Reference: [MZ05] Martinez J., Zenk E.: Dimension in algebraic frames II. Applications to frames of ideals in $C(X)$.Comment. Math. Univ. Carolin. 46 (2005), 607-636. Zbl 1121.06009, MR 2259494
Reference: [Na70] Nagami K.: Dimension Theory.Academic Press, New York, 1970. Zbl 0224.54060, MR 0271918
Reference: [No71] Noble N.: Products with closed projections, I.Trans. Amer. Math. Soc. 160 (1971), 169-183. MR 0283749
Reference: [PW88] Porter J., Woods R.G.: Extensions and Absolutes of Hausdorff Spaces.Springer, New York, 1988. Zbl 0652.54016, MR 0918341
Reference: [R77] Rajagopalan M.: Scattered spaces III.J. Indian Math. Soc. 41 (1977), 405-427 (1978). Zbl 0463.54034, MR 0515395
Reference: [RW83] Rudin M., Watson S.: Countable products of scattered paracompact spaces.Proc. Amer. Math. Soc. 89 (1983), 551-552. Zbl 0518.54021, MR 0715885
Reference: [S59] Semadeni Z.: Sur les ensembles clairsemés.Dissertationes Math. 19 (1959). Zbl 0137.16002, MR 0107849
Reference: [T68] Telgarsky R.: Total paracompactness and paracompact dispersed spaces.Bull. Acad. Polon. Sci. Sér. Math. Astronom. Phys. 16 (1968), 567-572. Zbl 0164.53101, MR 0235517
Reference: [T71] Telgarsky R.: $C$-scattered and paracompact spaces.Fund. Math. 73 (1971), 59-74. Zbl 0226.54018, MR 0295293
Reference: [T77] Telgarsky R.: Review of KR77, MR0474180 (57 #13830)..
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-3_9.pdf 292.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo