Previous |  Up |  Next

Article

Title: Riesz spaces of order bounded disjointness preserving operators (English)
Author: Amor, Fethi Ben
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 4
Year: 2007
Pages: 607-622
.
Category: math
.
Summary: Let $L$, $M$ be Archimedean Riesz spaces and $\Cal L_{b}(L,M)$ be the ordered vector space of all order bounded operators from $L$ into $M$. We define a Lamperti Riesz subspace of $\Cal L_{b}(L,M)$ to be an ordered vector subspace $\Cal L$ of $\Cal L_{b}(L,M)$ such that the elements of $\Cal L$ preserve disjointness and any pair of operators in $\Cal L$ has a supremum in $\Cal L_{b}(L,M)$ that belongs to $\Cal L$. It turns out that the lattice operations in any Lamperti Riesz subspace $\Cal L$ of $\Cal L_{b}(L,M)$ are given pointwise, which leads to a generalization of the classic Radon-Nikod'ym theorem for Riesz homomorphisms. We then introduce the notion of maximal Lamperti Riesz subspace of $\Cal L_{b}(L,M)$ as a generalization of orthomorphisms. In this regard, we show that any maximal Lamperti Riesz subspace of $\Cal L_{b}(L,M)$ is a band of $\Cal L_{b}(L,M)$, provided $M$ is Dedekind complete. Also, we extend standard transferability theorems for orthomorphisms to maximal Lamperti Riesz subspace of $\Cal L_{b}(L,M)$. Moreover, we give a complete description of maximal Lamperti Riesz subspaces on some continuous function spaces. (English)
Keyword: continuous functions spaces
Keyword: disjointness preserving operator
Keyword: Lamperti Riesz subspace
Keyword: order bounded operator
Keyword: orthomorphism
Keyword: Radon-Nikod'ym
Keyword: Riesz space
MSC: 06F20
MSC: 46A32
MSC: 46A40
MSC: 47B65
idZBL: Zbl 1199.06071
idMR: MR2375162
.
Date available: 2009-05-05T17:05:05Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119684
.
Reference: [1] Abramovich Y.A., Aliprantis C.D.: An Invitation to Operator Theory.Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002. Zbl 1022.47001, MR 1921782
Reference: [2] Abramovich Y.A., Aliprantis C.D.: Problems in Operators Theory.Graduate Studies in Mathematics, 51, American Mathematical Society, Providence, 2002. MR 1921783
Reference: [3] Abramovich Y.A., Kitover A.K.: Inverses of disjointness preserving operators.Memoirs Amer. Math. Soc. 143 (2000), 679. Zbl 0974.47032, MR 1639940
Reference: [4] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, Orlando, 1985. Zbl 1098.47001, MR 0809372
Reference: [5] Arendt W.: Spectral properties of Lamperti operators.Indiana Univ. Math. J. 32 (1983), 199-215. Zbl 0488.47016, MR 0690185
Reference: [6] Ben Amor F., Boulabiar K.: On the modulus of disjointness preserving operators on complex vector lattices.Algebra Universalis 54 (2005), 185-193. Zbl 1107.47026, MR 2217635
Reference: [7] Ben Amor F., Boulabiar K.: Maximal ideals of disjointness preserving operators.J. Math. Anal. Appl. 322 (2006), 599-609. MR 2250601
Reference: [8] Bernau S.: Orthomorphisms of Archimedean vector lattices.Math. Proc. Cambridge Philos. Soc. 89 (1981), 119-128. Zbl 0463.46002, MR 0591978
Reference: [9] Bigard A., Keimel K., Wolfenstein S.: Groupes et anneaux réticulés.Lectures Notes in Mathematics, 608, Springer, Berlin-Heidelberg-New York, 1977. Zbl 0384.06022, MR 0552653
Reference: [10] Bigard A., Keimel K.: Sur les endomorphismes conservants les polaires d'un groupe réticulé Archimédien.Bull. Soc. Math. France 97 (1969), 381-398. MR 0262137
Reference: [11] Conrad P.F., Diem J.E.: The Ring of polar preserving endomorphisms of an abelian lattice-ordered group.Illinois J. Math. 15 (1971), 222-240. Zbl 0213.04002, MR 0285462
Reference: [12] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579
Reference: [13] Huijsmans C.B., Luxemburg W.A.J.: An alternative proof of a Radon-Nikodým theorem for lattice homomorphisms.Acta. Appl. Math. 27 (1992), 67-71. Zbl 0807.47023, MR 1184878
Reference: [14] Huijsmans C.B., de Pagter B.: Disjointness preserving and diffuse operators.Compositio Math. 79 (1991), 351-374. Zbl 0757.47023, MR 1121143
Reference: [15] Luxemburg W.A.J.: Some aspects of the theory of Riesz spaces.Lecture Notes in Mathematics, 4, University of Arkansas, Fayetteville, 1979. Zbl 0431.46003, MR 0568706
Reference: [16] Luxemburg W.A.J., Schep A.R.: A Radon-Nikodým type theorem for positive operators and a dual.Nederl. Akad. Wetensch. Indag. Math. 40 (1978), 357-375. Zbl 0389.47018, MR 0507829
Reference: [17] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I.North-Holland, Amsterdam, 1971.
Reference: [18] Meyer M.: Le stabilateur d'un espace vectoriel réticulé.C.R. Acad. Sci. Paris, Serie I 283 (1976), 249-250. MR 0433191
Reference: [19] Meyer-Nieberg P.: Banach Lattices.Springer, Berlin-Heidelberg-New York, 1991. Zbl 0743.46015, MR 1128093
Reference: [20] de Pagter B.: $f$-algebras and orthomorphisms.Thesis, Leiden, 1981.
Reference: [21] de Pagter B.: A note on disjointness preserving operators.Proc. Amer. Math. Soc. 90 (1984), 543-549. Zbl 0541.47032, MR 0733403
Reference: [22] de Pagter B., Schep A.R.: Band decomposition for disjointness preserving operators.Positivity 4 (2000), 259-288. Zbl 0991.47022, MR 1797129
Reference: [23] van Putten B.: Disjunctive linear operators and partial multiplication in Riesz spaces.Thesis, Wageningen, 1980.
Reference: [24] Wójtowicz M.: On a weak Freudenthal spectral theorem.Comment. Math. Univ. Carolin. 33 (1992), 631-643. MR 1240185
Reference: [25] Zaanen A.C.: Riesz Spaces II.North-Holland, Amsterdam, 1983. Zbl 0519.46001, MR 0704021
Reference: [26] Zaanen A.C.: Introduction to Operator Theory in Riesz Spaces.Springer, Berlin-Heidelberg-New York, 1997. Zbl 0878.47022, MR 1631533
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-4_5.pdf 260.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo