Title:
|
Riesz spaces of order bounded disjointness preserving operators (English) |
Author:
|
Amor, Fethi Ben |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
48 |
Issue:
|
4 |
Year:
|
2007 |
Pages:
|
607-622 |
. |
Category:
|
math |
. |
Summary:
|
Let $L$, $M$ be Archimedean Riesz spaces and $\Cal L_{b}(L,M)$ be the ordered vector space of all order bounded operators from $L$ into $M$. We define a Lamperti Riesz subspace of $\Cal L_{b}(L,M)$ to be an ordered vector subspace $\Cal L$ of $\Cal L_{b}(L,M)$ such that the elements of $\Cal L$ preserve disjointness and any pair of operators in $\Cal L$ has a supremum in $\Cal L_{b}(L,M)$ that belongs to $\Cal L$. It turns out that the lattice operations in any Lamperti Riesz subspace $\Cal L$ of $\Cal L_{b}(L,M)$ are given pointwise, which leads to a generalization of the classic Radon-Nikod'ym theorem for Riesz homomorphisms. We then introduce the notion of maximal Lamperti Riesz subspace of $\Cal L_{b}(L,M)$ as a generalization of orthomorphisms. In this regard, we show that any maximal Lamperti Riesz subspace of $\Cal L_{b}(L,M)$ is a band of $\Cal L_{b}(L,M)$, provided $M$ is Dedekind complete. Also, we extend standard transferability theorems for orthomorphisms to maximal Lamperti Riesz subspace of $\Cal L_{b}(L,M)$. Moreover, we give a complete description of maximal Lamperti Riesz subspaces on some continuous function spaces. (English) |
Keyword:
|
continuous functions spaces |
Keyword:
|
disjointness preserving operator |
Keyword:
|
Lamperti Riesz subspace |
Keyword:
|
order bounded operator |
Keyword:
|
orthomorphism |
Keyword:
|
Radon-Nikod'ym |
Keyword:
|
Riesz space |
MSC:
|
06F20 |
MSC:
|
46A32 |
MSC:
|
46A40 |
MSC:
|
47B65 |
idZBL:
|
Zbl 1199.06071 |
idMR:
|
MR2375162 |
. |
Date available:
|
2009-05-05T17:05:05Z |
Last updated:
|
2012-05-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119684 |
. |
Reference:
|
[1] Abramovich Y.A., Aliprantis C.D.: An Invitation to Operator Theory.Graduate Studies in Mathematics, 50, American Mathematical Society, Providence, 2002. Zbl 1022.47001, MR 1921782 |
Reference:
|
[2] Abramovich Y.A., Aliprantis C.D.: Problems in Operators Theory.Graduate Studies in Mathematics, 51, American Mathematical Society, Providence, 2002. MR 1921783 |
Reference:
|
[3] Abramovich Y.A., Kitover A.K.: Inverses of disjointness preserving operators.Memoirs Amer. Math. Soc. 143 (2000), 679. Zbl 0974.47032, MR 1639940 |
Reference:
|
[4] Aliprantis C.D., Burkinshaw O.: Positive Operators.Academic Press, Orlando, 1985. Zbl 1098.47001, MR 0809372 |
Reference:
|
[5] Arendt W.: Spectral properties of Lamperti operators.Indiana Univ. Math. J. 32 (1983), 199-215. Zbl 0488.47016, MR 0690185 |
Reference:
|
[6] Ben Amor F., Boulabiar K.: On the modulus of disjointness preserving operators on complex vector lattices.Algebra Universalis 54 (2005), 185-193. Zbl 1107.47026, MR 2217635 |
Reference:
|
[7] Ben Amor F., Boulabiar K.: Maximal ideals of disjointness preserving operators.J. Math. Anal. Appl. 322 (2006), 599-609. MR 2250601 |
Reference:
|
[8] Bernau S.: Orthomorphisms of Archimedean vector lattices.Math. Proc. Cambridge Philos. Soc. 89 (1981), 119-128. Zbl 0463.46002, MR 0591978 |
Reference:
|
[9] Bigard A., Keimel K., Wolfenstein S.: Groupes et anneaux réticulés.Lectures Notes in Mathematics, 608, Springer, Berlin-Heidelberg-New York, 1977. Zbl 0384.06022, MR 0552653 |
Reference:
|
[10] Bigard A., Keimel K.: Sur les endomorphismes conservants les polaires d'un groupe réticulé Archimédien.Bull. Soc. Math. France 97 (1969), 381-398. MR 0262137 |
Reference:
|
[11] Conrad P.F., Diem J.E.: The Ring of polar preserving endomorphisms of an abelian lattice-ordered group.Illinois J. Math. 15 (1971), 222-240. Zbl 0213.04002, MR 0285462 |
Reference:
|
[12] Gillman L., Jerison M.: Rings of Continuous Functions.Springer, Berlin-Heidelberg-New York, 1976. Zbl 0327.46040, MR 0407579 |
Reference:
|
[13] Huijsmans C.B., Luxemburg W.A.J.: An alternative proof of a Radon-Nikodým theorem for lattice homomorphisms.Acta. Appl. Math. 27 (1992), 67-71. Zbl 0807.47023, MR 1184878 |
Reference:
|
[14] Huijsmans C.B., de Pagter B.: Disjointness preserving and diffuse operators.Compositio Math. 79 (1991), 351-374. Zbl 0757.47023, MR 1121143 |
Reference:
|
[15] Luxemburg W.A.J.: Some aspects of the theory of Riesz spaces.Lecture Notes in Mathematics, 4, University of Arkansas, Fayetteville, 1979. Zbl 0431.46003, MR 0568706 |
Reference:
|
[16] Luxemburg W.A.J., Schep A.R.: A Radon-Nikodým type theorem for positive operators and a dual.Nederl. Akad. Wetensch. Indag. Math. 40 (1978), 357-375. Zbl 0389.47018, MR 0507829 |
Reference:
|
[17] Luxemburg W.A.J., Zaanen A.C.: Riesz Spaces I.North-Holland, Amsterdam, 1971. |
Reference:
|
[18] Meyer M.: Le stabilateur d'un espace vectoriel réticulé.C.R. Acad. Sci. Paris, Serie I 283 (1976), 249-250. MR 0433191 |
Reference:
|
[19] Meyer-Nieberg P.: Banach Lattices.Springer, Berlin-Heidelberg-New York, 1991. Zbl 0743.46015, MR 1128093 |
Reference:
|
[20] de Pagter B.: $f$-algebras and orthomorphisms.Thesis, Leiden, 1981. |
Reference:
|
[21] de Pagter B.: A note on disjointness preserving operators.Proc. Amer. Math. Soc. 90 (1984), 543-549. Zbl 0541.47032, MR 0733403 |
Reference:
|
[22] de Pagter B., Schep A.R.: Band decomposition for disjointness preserving operators.Positivity 4 (2000), 259-288. Zbl 0991.47022, MR 1797129 |
Reference:
|
[23] van Putten B.: Disjunctive linear operators and partial multiplication in Riesz spaces.Thesis, Wageningen, 1980. |
Reference:
|
[24] Wójtowicz M.: On a weak Freudenthal spectral theorem.Comment. Math. Univ. Carolin. 33 (1992), 631-643. MR 1240185 |
Reference:
|
[25] Zaanen A.C.: Riesz Spaces II.North-Holland, Amsterdam, 1983. Zbl 0519.46001, MR 0704021 |
Reference:
|
[26] Zaanen A.C.: Introduction to Operator Theory in Riesz Spaces.Springer, Berlin-Heidelberg-New York, 1997. Zbl 0878.47022, MR 1631533 |
. |