Previous |  Up |  Next

Article

Title: When is $\Bbb R$ the union of an increasing family of null sets? (English)
Author: González-Hernández, Juan
Author: Hernández-Hernández, Fernando
Author: Villarreal, César E.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 4
Year: 2007
Pages: 623-630
.
Category: math
.
Summary: We study the problem in the title and show that it is equivalent to the fact that every set of reals is an increasing union of measurable sets. We also show the relationship of it with Sierpi'nski sets. (English)
Keyword: Sierp'nski set
Keyword: null sets
Keyword: random forcing
Keyword: rational perfect set forcing
Keyword: Miller forcing
MSC: 03E35
MSC: 28A05
idZBL: Zbl 1199.28003
idMR: MR2375163
.
Date available: 2009-05-05T17:05:10Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119685
.
Reference: [BJ95] Bartoszyński T., Judah H.: Set Theory: On the Structure of the Real Line.A K Peters Ltd., Wellesley, MA, 1995. MR 1350295
Reference: [Hru07] Hrušák M.: Personal communication.2007.
Reference: [JS94] Judah H., Shelah S.: Killing Luzin and Sierpiński sets.Proc. Amer. Math. Soc. 120 (1994), 3 917-920. Zbl 0797.03050, MR 1164145
Reference: [Kun83] Kunen K.: Set Theory: An Introduction to Independence Proofs.Studies in Logic and the Foundations of Mathematics, vol. 102, North-Holland Publishing Co., Amsterdam, 1983, reprint of the 1980 original. Zbl 0534.03026, MR 0597342
Reference: [Oxt80] Oxtoby J.C.: Measure and Category. A Survey of the Analogies between Topological and Measure Spaces.second ed., Graduate Texts in Mathematics, vol. 2, Springer, New York-Berlin, 1980. Zbl 0435.28011, MR 0584443
Reference: [Piu97] Piunovskiy A.B.: Optimal Control of Random Sequences in Problems with Constraints.Mathematics and its Applications, vol. 410, Kluwer Academic Publishers, Dordrecht, 1997, with a preface by V.B. Kolmanovskii and A.N. Shiryaev. Zbl 0894.93001, MR 1472738
Reference: [Roy88] Royden H.L.: Real Analysis.third ed., Macmillan Publishing Company, New York, 1988. MR 1013117
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-4_6.pdf 218.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo