Previous |  Up |  Next

Article

Title: Linear hyperbolic problems in the whole scale of Sobolev-type spaces of periodic functions (English)
Author: Kmit, I.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 48
Issue: 4
Year: 2007
Pages: 631-645
.
Category: math
.
Summary: We study one-dimensional linear hyperbolic systems with $L^{\infty}$-coeffici\-ents subjected to periodic conditions in time and reflection boundary conditions in space. We derive a priori estimates and give an operator representation of solutions in the whole scale of Sobolev-type spaces of periodic functions. These spaces give an optimal regularity trade-off for our problem. (English)
Keyword: hyperbolic systems
Keyword: periodic-Dirichlet problems
Keyword: anisotropic Sobolev spaces
Keyword: a priori estimates
MSC: 35A05
MSC: 35B10
MSC: 35B45
MSC: 35L50
idZBL: Zbl 1199.35213
idMR: MR2375164
.
Date available: 2009-05-05T17:05:16Z
Last updated: 2012-05-01
Stable URL: http://hdl.handle.net/10338.dmlcz/119686
.
Reference: [1] Bandelow U., Recke L., Sandstede B.: Frequency regions for forced locking of self-pulsating multi-section DFB lasers.Optics Comm. 147 (1998), 212-218.
Reference: [2] Bourbaki N.: Integration, Chapters 1/4.Actualités Scientifiques et Industrielles, Hermann, Paris, 1966. Zbl 1116.28002
Reference: [3] Jochmann F., Recke L.: Well-posedness of an initial boundary value problem from laser dynamics.Math. Models Methods Appl. Sci. 12 (2002), 593-606. Zbl 1025.35011, MR 1899843
Reference: [4] Garrett P.: Functions on circles.2006; Eprint: www.math.umn.edu/$^\sim $garrett/m/mfms/notes/09\_sobolev.ps.
Reference: [5] Gorbachuk V.I., Gorbachuk M.L.: Boundary value problems for operator differential equations.Naukova Dumka, Kiev, 1984; English translation: Kluwer Academic Publishers, Dordrecht, 1991. Zbl 0845.34065, MR 0776604
Reference: [6] Herrmann L.: Periodic solutions of abstract differential equations: the Fourier method.Czechoslovak Math. J. 30 (105) (1980), 177-206. Zbl 0445.35013, MR 0566046
Reference: [7] Kmit I., Recke L.: Fredholm alternative for periodic-Dirichlet problems for linear hyperbolic systems.J. Math. Anal. Appl. 335 (2007), 355-370. Zbl 1160.35046, MR 2340326
Reference: [8] Recke L., Schneider K.R., Strygin V.V.: Spectral properties of coupled wave equations.Z. Angew. Math. Phys. 50 (1999), 6 925-933. MR 1735638
Reference: [9] Rehberg J., Wünsche H.-J., Bandelow U., Wenzel H.: Spectral properties of a system describing fast pulsating DFB lasers.Z. Angew. Math. Mech. 77 (1997), 75-77. MR 1433576
Reference: [10] Robinson J.C.: Infinite-Dimensional Dynamical Systems.Cambridge Texts in Appl. Math., Cambridge University Press, Cambridge, 2001. Zbl 1084.37063, MR 1881888
Reference: [11] Sieber J.: Numerical bifurcation analysis for multi-section semiconductor lasers.SIAM J. Appl. Dyn. Syst. 1 (2002), 248-270. MR 1968370
Reference: [12] Sieber J., Recke L., Schneider K.: Dynamics of multisection semiconductor lasers.J. Math. Sci. (New York) 124 (2004), 5 5298-5309. MR 2129136
Reference: [13] Tromborg B., Lassen H.E., Olesen H.: Traveling wave analysis of semiconductor lasers.IEEE J. of Quant. El. 30 (1994), 5 939-956.
Reference: [14] Vejvoda O. et al.: Partial Differential Equations: Time-Periodic Solutions.Sijthoff Noordhoff, 1981. Zbl 0501.35001
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_48-2007-4_7.pdf 257.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo