Previous |  Up |  Next

Article

Title: Some approximation properties of the Kantorovich variant of the Bleimann, Butzer and Hahn operators (English)
Author: Nowak, Grzegorz
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 1
Year: 2008
Pages: 67-78
.
Category: math
.
Summary: For some classes of functions $f$ locally integrable in the sense of Lebesgue or Denjoy-Perron on the interval $[0;\infty )$, the Kantorovich type modification of the Bleimann, Butzer and Hahn operators is considered. The rate of pointwise convergence of these operators at the Lebesgue or Lebesgue-Denjoy points of $f$ is estimated. (English)
Keyword: Bleimann
Keyword: Butzer and Hahn operator
Keyword: Lebesgue-Denjoy point
Keyword: rate of convergence
MSC: 41A25
idZBL: Zbl 1212.41051
idMR: MR2433625
.
Date available: 2009-05-05T17:06:33Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119702
.
Reference: [1] Abel U.: On the asymptotic approximation with Bivariate operators of Bleimann, Butzer and Hahn.J. Approx. Theory 97 (1999), 181-198. Zbl 0928.41012, MR 1676351
Reference: [2] Abel U.: On the asymptotic approximation with operators of Bleimann, Butzer and Hahn.Indag. Math. (N.S.) 7 (1996), 1-9. Zbl 0851.47009, MR 1621356, 10.1016/0019-3577(96)88653-8
Reference: [3] Abel U., Ivan M.: Some identities for the operator of Bleimann, Butzer and Hahn involving divided differences.Calcolo 36 3 (1999), 143-160. Zbl 0931.41013, MR 1742307, 10.1007/s100920050028
Reference: [4] Abel U., Ivan M.: A Kantorovich variant of the Bleimann, Butzer and Hahn operators.Rend. Circ. Mat. Palermo (2) Suppl. (2002), 68 205-218. Zbl 1012.41016, MR 1975505
Reference: [5] Bleimann G., Butzer P.L., Hahn L.: A Bernstein-type operator approximating continuous functions of the semi-axis.Indag. Math. 42 (1980), 255-262. MR 0587054
Reference: [6] de la Cal J., Luquin F.: A note on limiting properties of some Bernstein-type operators.J. Approx. Theory 68 (1992), 322-329. MR 1152222, 10.1016/0021-9045(92)90108-Z
Reference: [7] Della Vecchia B.: Some properties of a rational operator of Bernstein-type.in Progress in Approximation Theory (P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991, pp.177-185. MR 1114772
Reference: [8] Hermann T.: On the operator of Bleimann, Butzer and Hahn.Colloq. Math. Soc. János Bolyai 58 (1991), 355-360. Zbl 0784.41016, MR 1211445
Reference: [9] Khan R.A.: A note on a Bernstein-type operator of Bleimann, Butzer and Hahn.J. Approx. Theory 53 (1988), 295-303. Zbl 0676.41024, MR 0947433, 10.1016/0021-9045(88)90024-X
Reference: [10] Khan R.A.: Some properties of a Bernstein-type operator of Bleimann, Butzer and Hahn.in Progress in Approximation Theory (P. Nevai and A. Pinkus, Eds.), Academic Press, New York, 1991, pp.497-504. MR 1114792
Reference: [11] Jayasri C., Sitaraman Y.: On a Bernstein type operator of Bleimann, Butzer and Hahn.J. Comput. Appl. Math. 47 2 (1993), 267-272. Zbl 0779.41008, MR 1237316, 10.1016/0377-0427(93)90008-Y
Reference: [12] Nowak G., Pych-Taberska P.: Approximation properties of the generalized Favard-Kantorovich operators.Comment. Math. Prace Mat. 39 (1999), 139-152. Zbl 0970.41014, MR 1739024
Reference: [13] Saks S.: Theory of the Integral.New York, 1937. Zbl 0017.30004
Reference: [14] Totik V.: Uniform approximation by Bernstein-type operators.Indag. Math. 46 (1984), 87-93. Zbl 0538.41035, MR 0748982
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-1_7.pdf 210.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo