Previous |  Up |  Next

Article

Title: Positive solutions for systems of generalized three-point nonlinear boundary value problems (English)
Author: Henderson, J.
Author: Ntouyas, S. K.
Author: Purnaras, I. K.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 1
Year: 2008
Pages: 79-91
.
Category: math
.
Summary: Values of $\lambda$ are determined for which there exist positive solutions of the system of three-point boundary value problems, $u''+\lambda a(t) f(v) = 0$, $v''+\lambda b(t) g(u) = 0$, for $0 < t < 1$, and satisfying, $u(0) = \beta u(\eta)$, $u(1)=\alpha u(\eta)$, $v(0) = \beta v(\eta)$, $v(1) = \alpha v(\eta)$. A Guo-Krasnosel'skii fixed point theorem is applied. (English)
Keyword: generalized three-point boundary value problem
Keyword: system of differential equations
Keyword: eigenvalue problem
MSC: 34A34
MSC: 34B10
MSC: 34B18
idZBL: Zbl 1212.34058
idMR: MR2433626
.
Date available: 2009-05-05T17:06:38Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119703
.
Related article: http://dml.cz/handle/10338.dmlcz/119741
.
Reference: [1] Agarwal R.P., O'Regan D., Wong P.J.Y.: Positive Solutions of Differential, Difference and Integral Equations.Kluwer, Dordrecht, 1999. Zbl 1157.34301
Reference: [2] Benchohra M., Hamani S., Henderson J., Ntouyas S.K., Ouahab A.: Positive solutions for systems of nonlinear eigenvalue problems.Global J. Math. Anal. 1 (2007), 19-28. MR 2374098
Reference: [3] Erbe L.H., Wang H.: On the existence of positive solutions of ordinary differential equations.Proc. Amer. Math. Soc. 120 (1994), 743-748. Zbl 0802.34018, MR 1204373, 10.1090/S0002-9939-1994-1204373-9
Reference: [4] Graef J.R., Yang B.: Boundary value problems for second order nonlinear ordinary differential equations.Commun. Appl. Anal. 6 (2002), 273-288. Zbl 1085.34514, MR 1894171
Reference: [5] Guo D., Lakshmikantham V.: Nonlinear Problems in Abstract Cones.Academic Press, Orlando, 1988. Zbl 0661.47045, MR 0959889
Reference: [6] Henderson J., Ntouyas S.K.: Positive solutions for systems of nonlinear boundary value problems.Nonlinear Studies, in press. Zbl 1148.34016
Reference: [7] Henderson J., Ntouyas S.K.: Positive solutions for systems of three-point nonlinear boundary value problems.Austr. J. Math. Anal. Appl., in press. MR 2413225
Reference: [8] Henderson J., Wang H.: Positive solutions for nonlinear eigenvalue problems.J. Math. Anal. Appl. 208 (1997), 1051-1060. Zbl 0876.34023, MR 1440355, 10.1006/jmaa.1997.5334
Reference: [9] Henderson J., Wang H.: Nonlinear eigenvalue problems for quasilinear systems.Comput. Math. Appl. 49 (2005), 1941-1949. Zbl 1092.34517, MR 2154696, 10.1016/j.camwa.2003.08.015
Reference: [10] Henderson J., Wang H.: An eigenvalue problem for quasilinear systems.Rocky Mountain J. Math. 37 (2007), 215-228. Zbl 1149.34013, MR 2316445, 10.1216/rmjm/1181069327
Reference: [11] Hu L., Wang L.L.: Multiple positive solutions of boundary value problems for systems of nonlinear second order differential equations.J. Math. Anal. Appl. 335 (2007), 2 1052-1060. Zbl 1127.34010, MR 2346890, 10.1016/j.jmaa.2006.11.031
Reference: [12] Infante G.: Eigenvalues of some nonlocal boundary value problems.Proc. Edinburgh Math. Soc. 46 (2003), 75-86. MR 1961173
Reference: [13] Infante G., Webb J.R.L.: Loss of positivity in a nonlinear scalar heat equation.Nonlinear Differential Equations Appl. 13 (2006), 249-261. Zbl 1112.34017, MR 2243714, 10.1007/s00030-005-0039-y
Reference: [14] Liang R., Peng J., Shen J.: Positive solutions to a generalized second order three-point boundary value problem.Appl. Math. Comput. (2007) doi:10.1016/j.amc.2007.07.025. Zbl 1140.34313
Reference: [15] Ma R.: Multiple nonnegative solutions of second order systems of boundary value problems.Nonlinear Anal. 42 (2000), 1003-1010. Zbl 0973.34014, MR 1780450, 10.1016/S0362-546X(99)00152-2
Reference: [16] Raffoul Y.: Positive solutions of three-point nonlinear second order boundary value problems.Electron. J. Qual. Theory Differ. Equ. 2002, no. 15, 11pp. (electronic). MR 1934391
Reference: [17] Wang H.: On the number of positive solutions of nonlinear systems.J. Math. Anal. Appl. 281 (2003), 287-306. Zbl 1036.34032, MR 1980092, 10.1016/S0022-247X(03)00100-8
Reference: [18] Webb J.R.L.: Positive solutions of some three point boundary value problems via fixed point index theory.Nonlinear Anal. 47 (2001), 4319-4332. Zbl 1042.34527, MR 1975828, 10.1016/S0362-546X(01)00547-8
Reference: [19] Zhou Y., Xu Y.: Positive solutions of three-point boundary value problems for systems of nonlinear second order ordinary differential equations.J. Math. Anal. Appl. 320 (2006), 578-590. Zbl 1101.34008, MR 2225977, 10.1016/j.jmaa.2005.07.014
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-1_8.pdf 214.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo