Previous |  Up |  Next

Article

Title: Manifolds admitting stable forms (English)
Author: Lê, Hông-Van
Author: Panák, Martin
Author: Vanžura, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 1
Year: 2008
Pages: 101-117
.
Category: math
.
Summary: In this note we give a direct method to classify all stable forms on $\Bbb R^n$ as well as to determine their automorphism groups. We show that in dimensions 6, 7, 8 stable forms coincide with non-degenerate forms. We present necessary conditions and sufficient conditions for a manifold to admit a stable form. We also discuss rich properties of the geometry of such manifolds. (English)
Keyword: stable forms
Keyword: automorphism groups
MSC: 53C10
MSC: 53C15
MSC: 53C25
idZBL: Zbl 1212.53051
idMR: MR2433628
.
Date available: 2009-05-05T17:06:48Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119705
.
Reference: [1] Borel A., Chandra H.: Arithmetic subgroups of algebraic groups.Ann. of Math. 75 (1962), 485-535. Zbl 0107.14804, MR 0147566, 10.2307/1970210
Reference: [2] Bureš J., Vanžura J.: Multisymplectic forms of degree three in dimension seven.Rend. Circ. Mat. Palermo (2) Suppl. no. 71 (2003), 73-91. Zbl 1045.53017, MR 1982435
Reference: [3] Bryant R.: Metrics with exceptional holonomy.Ann. of Math. (2) 126 (1987), 525-576. Zbl 0637.53042, MR 0916718
Reference: [4] Bryant R.: Conformal geometry and $3$-plane fields on $6$-manifolds.arXiv:math.DG/0511110. MR 0974338
Reference: [5] Čadek M., Crabb M., Vanžura J.: Obstruction theory on $8$-manifolds.preprint 2007.
Reference: [6] Djokovic D.Z.: Classification of trivectors of an eight-dimensional real vector space.Linear and Multilinear Algebra 13 (1983), 3-39. Zbl 0515.15011, MR 0691457, 10.1080/03081088308817501
Reference: [7] Dupont J.: $K$-theory obstructions to the existence of vector fields.Acta Math. 133 (1974), 67-80. Zbl 0313.57012, MR 0425980, 10.1007/BF02392142
Reference: [8] Gauntlett J.P., Martelli D., Pakis S., Waldram D.: $G$-structures and wrapped NS5-branes.Comm. Math. Phys. 247 (2004), 421-445, hep-th/0205050. MR 2063267, 10.1007/s00220-004-1066-y
Reference: [9] Gray A.: Vector cross products on manifolds.Trans. Amer. Math. Soc. 141 (1969), 465-504; (Errata in Trans. Amer. Math. Soc. 148 (1970), 625). Zbl 0182.24603, MR 0243469, 10.1090/S0002-9947-1969-0243469-5
Reference: [10] Hitchin N.: The geometry of three-forms in six dimensions.J. Differential Geom. 55 (2000), 547-576. Zbl 1036.53042, MR 1863733
Reference: [11] Hitchin N.: Stable forms and special metrics.Contemp. Math. 288 (2001), 70-89. Zbl 1004.53034, MR 1871001, 10.1090/conm/288/04818
Reference: [12] Joyce D.: Compact Manifolds with Special Holonomy.Oxford University Press, Oxford, 2000. Zbl 1027.53052, MR 1787733
Reference: [13] Sato M., Kimura T.: A classification of irreducible prehomogeneous vector spaces and their relative invariants.Nagoya Math. J. 65 (1977), 1-155. MR 0430336
Reference: [14] Le H.V.: The existence of symplectic $3$-forms on $7$-manifolds.arXiv:math.DG/0603182.
Reference: [15] Le H.V.: Manifolds admitting a $\tilde G_2$-structure.arXiv:07040503.
Reference: [16] Murakami S.: On the automorphism of a real semi-simple Lie algebra.J. Math. Soc. Japan 4 (1952), 103-133. MR 0051829, 10.2969/jmsj/00420103
Reference: [17] Sagle A.: Malcev algebras.Trans. Amer. Math. Soc. 101 (1961), 426-458. Zbl 0101.02302, MR 0143791, 10.1090/S0002-9947-1961-0143791-X
Reference: [18] Thomas E.: Fields of tangent $k$-planes on manifolds.Invent. Math. 3 (1967), 334-347. Zbl 0162.55402, MR 0217814, 10.1007/BF01402957
Reference: [19] Thomas E.: Vector fields on low dimensional manifolds.Math. Z. 103 (1967), 85-93. MR 0224109, 10.1007/BF01110620
Reference: [20] Tsimpis D.: M-theory on eight-manifolds revisited: $N=1$ supersymmetry and generalized Spin $(7)$-structures.preprint MPP-2005-129. MR 2219075
Reference: [21] Witt F.: Special metric structures and closed forms.Oxford Ph.D. Thesis, arXiv:math.DG/0502443.
Reference: [22] Yamaguchi K.: Differential systems associated with simple graded Lie algebras.Adv. Stud. Pure Math. 22 (1993), 413-494. Zbl 0812.17018, MR 1274961
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-1_10.pdf 270.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo