Previous |  Up |  Next


remainder; compactification; topological group; $p$-space; Lindelöf $p$-space; metrizability; countable type; Lindelöf space; pseudocompact space; $\pi $-base; compactification
We prove a Dichotomy Theorem: for each Hausdorff compactification $bG$ of an arbitrary topological group $G$, the remainder $bG\setminus G$ is either pseudocompact or Lindelöf. It follows that if a remainder of a topological group is paracompact or Dieudonne complete, then the remainder is Lindelöf, and the group is a paracompact $p$-space. This answers a question in A.V. Arhangel'skii, {\it Some connections between properties of topological groups and of their remainders\/}, Moscow Univ. Math. Bull. 54:3 (1999), 1--6. It is shown that every Tychonoff space can be embedded as a closed subspace in a pseudocompact remainder of some topological group. We also establish some other results and present some examples and questions.
[1] Arhangel'skii A.V.: On a class of spaces containing all metric and all locally compact spaces. Mat. Sb. 67 (109) (1965), 55-88; English translation: Amer. Math. Soc. Transl. 92 (1970), 1-39. MR 0190889
[2] Arhangel'skii A.V.: Classes of topological groups. Russian Math. Surveys 36 (3) (1981), 151-174. DOI 10.1070/RM1981v036n03ABEH004249 | MR 0622722
[3] Arhangel'skii A.V.: Some connections between properties of topological groups and of their remainders. Moscow Univ. Math. Bull. 54:3 (1999), 1-6. MR 1711899
[4] Arhangel'skii A.V.: Topological invariants in algebraic environment. in: Recent Progress in General Topology 2, eds. M. Hušek, Jan van Mill, North-Holland, Amsterdam, 2002, pp.1-57. MR 1969992 | Zbl 1030.54026
[5] Arhangel'skii A.V.: Remainders in compactifications and generalized metrizability properties. Topology Appl. 150 (2005), 79-90. DOI 10.1016/j.topol.2004.10.015 | MR 2133669 | Zbl 1075.54012
[6] Arhangel'skii A.V.: More on remainders close to metrizable spaces. Topology Appl. 154 (2007), 1084-1088. DOI 10.1016/j.topol.2006.10.008 | MR 2298623 | Zbl 1144.54001
[7] Engelking R.: General Topology. PWN, Warszawa, 1977. MR 0500780 | Zbl 0684.54001
[8] Filippov V.V.: On perfect images of paracompact $p$-spaces. Soviet Math. Dokl. 176 (1967), 533-536. MR 0222853
[9] Henriksen M., Isbell J.R.: Some properties of compactifications. Duke Math. J. 25 (1958), 83-106. DOI 10.1215/S0012-7094-58-02509-2 | MR 0096196 | Zbl 0081.38604
[10] Tkachenko M.G.: The Suslin property in free topological groups over compact spaces (Russian). Mat. Zametki 34 (1983), 601-607; English translation: Math. Notes 34 (1983), 790-793. MR 0722229
[11] Roelke W., Dierolf S.: Uniform Structures on Topological Groups and their Quotients. McGraw-Hill, New York, 1981.
Partner of
EuDML logo