Previous |  Up |  Next

Article

Title: On monotone Lindelöfness of countable spaces (English)
Author: Levy, Ronnie
Author: Matveev, Mikhail
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 1
Year: 2008
Pages: 155-161
.
Category: math
.
Summary: A space is monotonically Lindelöf (mL) if one can assign to every open cover $\Cal U$ a countable open refinement $r(\Cal U)$ so that $r(\Cal U)$ refines $r(\Cal V)$ whenever $\Cal U$ refines $\Cal V$. We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable. (English)
Keyword: Lindelöf
Keyword: monotonically Lindelöf
Keyword: tower
Keyword: the countable fan space
Keyword: Pixley-Roy space
MSC: 54D20
idZBL: Zbl 1212.54077
idMR: MR2433633
.
Date available: 2009-05-05T17:07:14Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119710
.
Reference: [1] Baumgartner J.E.: Chains and antichains in $\Cal P(ømega)$.J. Symbolic Logic 45 (1980), 1 85-92. MR 0560227, 10.2307/2273356
Reference: [2] Bennett H., Lutzer D., Matveev M.: The monotone Lindelöf property and separability in ordered spaces.Topology Appl. 151 (2005), 180-186. Zbl 1069.54021, MR 2139751, 10.1016/j.topol.2004.05.015
Reference: [3] van Douwen E.K.: Integers in topology.Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan, eds., Elsevier Sci. Pub. B.V., 1984, pp.111-168.
Reference: [4] van Douwen E.K.: The Pixley-Roy topology on spaces of subsets.Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-1976), 113-134, Academic Press, New York, 1977. Zbl 0372.54006, MR 0440489
Reference: [5] van Douwen E.K., Kunen K.: L-spaces and S-spaces in $\Cal P(ømega)$.Topology Appl. 14 (1982), 2 143-149. MR 0667660, 10.1016/0166-8641(82)90064-5
Reference: [6] Engelking R.: General Topology.Heldermann Verlag, Berlin, Sigma Series in Pure Mathematics, 6, 1989. Zbl 0684.54001, MR 1039321
Reference: [7] Gruenhage G.: Generalized metric spaces.in: Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan, eds., Elsevier Sci. Pub. B.V., 1984, pp.423-501. Zbl 0794.54034, MR 0776629
Reference: [8] Junnila H.J.K., Künzi H.-P.A.: Ortho-bases and monotonic properties.Proc. Amer. Math. Soc. 119 (1993), 4 1335-1345. MR 1165056, 10.1090/S0002-9939-1993-1165056-6
Reference: [9] Levy R., Matveev M.: Some examples of monotonically Lindelöf and not monotonically Lindelöf spaces.Topology Appl. 154 (2007), 2333-2343. MR 2328016
Reference: [10] Matveev M.: A monotonically Lindelöf space need not be monotonically normal.preprint, 1994.
Reference: [11] Todorčević S.: Partition Problems in Topology.Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. MR 0980949, 10.1090/conm/084
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-1_15.pdf 197.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo