Title:
|
On monotone Lindelöfness of countable spaces (English) |
Author:
|
Levy, Ronnie |
Author:
|
Matveev, Mikhail |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
49 |
Issue:
|
1 |
Year:
|
2008 |
Pages:
|
155-161 |
. |
Category:
|
math |
. |
Summary:
|
A space is monotonically Lindelöf (mL) if one can assign to every open cover $\Cal U$ a countable open refinement $r(\Cal U)$ so that $r(\Cal U)$ refines $r(\Cal V)$ whenever $\Cal U$ refines $\Cal V$. We show that some countable spaces are not mL, and that, assuming CH, there are countable mL spaces that are not second countable. (English) |
Keyword:
|
Lindelöf |
Keyword:
|
monotonically Lindelöf |
Keyword:
|
tower |
Keyword:
|
the countable fan space |
Keyword:
|
Pixley-Roy space |
MSC:
|
54D20 |
idZBL:
|
Zbl 1212.54077 |
idMR:
|
MR2433633 |
. |
Date available:
|
2009-05-05T17:07:14Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119710 |
. |
Reference:
|
[1] Baumgartner J.E.: Chains and antichains in $\Cal P(ømega)$.J. Symbolic Logic 45 (1980), 1 85-92. MR 0560227, 10.2307/2273356 |
Reference:
|
[2] Bennett H., Lutzer D., Matveev M.: The monotone Lindelöf property and separability in ordered spaces.Topology Appl. 151 (2005), 180-186. Zbl 1069.54021, MR 2139751, 10.1016/j.topol.2004.05.015 |
Reference:
|
[3] van Douwen E.K.: Integers in topology.Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan, eds., Elsevier Sci. Pub. B.V., 1984, pp.111-168. |
Reference:
|
[4] van Douwen E.K.: The Pixley-Roy topology on spaces of subsets.Set-theoretic topology (Papers, Inst. Medicine and Math., Ohio Univ., Athens, Ohio, 1975-1976), 113-134, Academic Press, New York, 1977. Zbl 0372.54006, MR 0440489 |
Reference:
|
[5] van Douwen E.K., Kunen K.: L-spaces and S-spaces in $\Cal P(ømega)$.Topology Appl. 14 (1982), 2 143-149. MR 0667660, 10.1016/0166-8641(82)90064-5 |
Reference:
|
[6] Engelking R.: General Topology.Heldermann Verlag, Berlin, Sigma Series in Pure Mathematics, 6, 1989. Zbl 0684.54001, MR 1039321 |
Reference:
|
[7] Gruenhage G.: Generalized metric spaces.in: Handbook of Set-theoretic Topology, K. Kunen and J. E. Vaughan, eds., Elsevier Sci. Pub. B.V., 1984, pp.423-501. Zbl 0794.54034, MR 0776629 |
Reference:
|
[8] Junnila H.J.K., Künzi H.-P.A.: Ortho-bases and monotonic properties.Proc. Amer. Math. Soc. 119 (1993), 4 1335-1345. MR 1165056, 10.1090/S0002-9939-1993-1165056-6 |
Reference:
|
[9] Levy R., Matveev M.: Some examples of monotonically Lindelöf and not monotonically Lindelöf spaces.Topology Appl. 154 (2007), 2333-2343. MR 2328016 |
Reference:
|
[10] Matveev M.: A monotonically Lindelöf space need not be monotonically normal.preprint, 1994. |
Reference:
|
[11] Todorčević S.: Partition Problems in Topology.Contemporary Mathematics, 84, American Mathematical Society, Providence, Rhode Island, 1989. MR 0980949, 10.1090/conm/084 |
. |