Previous |  Up |  Next

Article

Title: Mapping theorems on $\aleph$-spaces (English)
Author: Sakai, Masami
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 1
Year: 2008
Pages: 163-167
.
Category: math
.
Summary: In this paper we improve some mapping theorems on $\aleph$-spaces. For instance we show that an $\aleph$-space is preserved by a closed and countably bi-quotient map. This is an improvement of Yun Ziqiu's theorem: an $\aleph$-space is preserved by a closed and open map. (English)
Keyword: $\aleph$-space
Keyword: $k$-network
Keyword: closed map
Keyword: countably bi-quotient map
MSC: 54C10
MSC: 54E18
idZBL: Zbl 1212.54049
idMR: MR2433634
.
Date available: 2009-05-05T17:07:19Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119711
.
Reference: [1] Gao Z.M.: $\aleph$-space is invariant under perfect mappings.Questions Answers Gen. Topology 5 (1987), 271-279. Zbl 0636.54026, MR 0917885
Reference: [2] Gao Z.M., Hattori Y.: A characterization of closed $s$-images of metric spaces.Tsukuba J. Math. 11 (1987), 367-370. Zbl 0643.54034, MR 0926463
Reference: [3] Junnila H., Ziqiu Y.: $\aleph$-spaces and a space with a $\sigma$-hereditarily closure-preserving $k$-network.Topology Appl. 44 (1992), 209-215. MR 1173260, 10.1016/0166-8641(92)90096-I
Reference: [4] Lin S.: Mapping theorems on $\aleph$-spaces.Topology Appl. 30 (1988), 159-164. Zbl 0663.54017, MR 0967752, 10.1016/0166-8641(88)90014-4
Reference: [5] Liu C.: Notes on closed mappings.Houston J. Math. 33 (2007), 249-259. Zbl 1133.54018, MR 2287853
Reference: [6] Liu C., Sakai M., Tanaka Y.: Topological groups with a certain point-countable cover.Topology Appl. 119 (2002), 209-217. Zbl 0997.54059, MR 1886095, 10.1016/S0166-8641(01)00066-9
Reference: [7] O'Meara P.: On paracompactness in function spaces with the compact open topology.Proc. Amer. Math. Soc. 29 (1971), 183-189. Zbl 0214.21105, MR 0276919, 10.2307/2037695
Reference: [8] Siwiec F.: Sequence-covering and countably bi-quotient mappings.General Topology Appl. 1 (1971), 143-154. Zbl 0218.54016, MR 0288737, 10.1016/0016-660X(71)90120-6
Reference: [9] Siwiec F., Mancuso V.J.: Relations among certain mappings and conditions for their equivalence.General Topology Appl. 1 (1971), 33-41. Zbl 0216.44203, MR 0282347, 10.1016/0016-660X(71)90108-5
Reference: [10] Tanaka Y.: Point-countable covers and $k$-networks.Topology Proc. 12 (1987), 327-349. Zbl 0676.54035, MR 0991759
Reference: [11] Ziqiu Y.: A new characterization of $\aleph$-spaces.Topology Proc. 16 (1991), 253-256. Zbl 0784.54029
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-1_16.pdf 183.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo