Previous |  Up |  Next

Article

Title: Bol loops with a large left nucleus (English)
Author: Chein, Orin
Author: Goodaire, Edgar G.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 2
Year: 2008
Pages: 171-196
.
Category: math
.
Summary: Possession of a unique nonidentity commutator/associator is a property which dominates the theory of loops whose loop rings, while not associative, nevertheless satisfy an ``interesting'' identity. Indeed, until now, with the exception of some ad hoc examples, the only known class of Bol loops whose loop rings satisfy the right Bol identity have this property. In this paper, we identify another class of loops whose loop rings are ``strongly right alternative'' and present various constructions of these loops. (English)
Keyword: Bol loop
Keyword: left nucleus
Keyword: centre
MSC: 20N05
idZBL: Zbl 1192.20051
idMR: MR2426884
.
Date available: 2009-05-05T17:07:29Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119714
.
Reference: [CG86] Chein O., Goodaire E.G.: Loops whose loop rings are alternative.Comm. Algebra 14 (1986), 2 293-310. Zbl 0582.17015, MR 0817047, 10.1080/00927878608823308
Reference: [CG90] Chein O., Goodaire E.G.: Code loops are RA$2$ loops.J. Algebra 130 (1990), 2 385-387. MR 1051309, 10.1016/0021-8693(90)90088-6
Reference: [GJM96] Goodaire E.G., Jespers E., Polcino Milies C.: Alternative Loop Rings.North-Holland Math. Studies, vol. 184, Elsevier, Amsterdam, 1996. Zbl 0878.17029, MR 1433590
Reference: [Goo83] Goodaire E.G.: Alternative loop rings.Publ. Math. Debrecen 30 (1983), 31-38. Zbl 0537.17006, MR 0733069
Reference: [GR82] Goodaire E.G., Robinson D.A.: Loops which are cyclic extensions of their nuclei.Compositio Math. 45 (1982), 341-356. Zbl 0488.20057, MR 0656610
Reference: [GR95] Goodaire E.G., Robinson D.A.: A class of loops with right alternative loop rings.Comm. Algebra 22 (1995), 14 5623-5634. MR 1298738, 10.1080/00927879408825150
Reference: [Kun98] Kunen K.: Alternative loop rings.Comm. Algebra 26 (1998), 557-564. Zbl 0895.20053, MR 1604107, 10.1080/00927879808826147
Reference: [Moo] Moorhouse G.E.: {{http://everest.uwyo.edu/$^{\sim}$moorhous/pub/bol.html}}..
Reference: [Pai55] Paige L.J.: A theorem on commutative power associative loop algebras.Proc. Amer. Math. Soc. 6 (1955), 279-280. Zbl 0064.02903, MR 0068529, 10.1090/S0002-9939-1955-0068529-9
Reference: [Pfl90] Pflugfelder H.O.: Quasigroups and Loops: Introduction.Heldermann Verlag, Berlin, 1990. Zbl 0715.20043, MR 1125767
Reference: [Voj04] Vojtěchovský P.: A class of Bol loops with a subgroup of index two.Comment. Math. Univ. Carolin. 45 (2004), 371-381. Zbl 1101.20048, MR 2075284
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-2_2.pdf 303.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo