Previous |  Up |  Next

Article

Keywords:
partially ordered quasigroup; positive quasigroup; Riesz quasigroup; direct product; lexicographic pro\-duct
Summary:
We describe necessary and sufficient conditions for a direct product and a lexicographic product of partially ordered quasigroups to be a positive quasigroup. Analogous questions for Riesz quasigroups are studied.
References:
[1] Bosbach B.: Lattice ordered binary systems. Acta. Sci. Math. 32 (1988), 257-289. MR 0980278
[2] Bruck R.H.: A Survey of Binary Systems. Ergebnisse der Mathematik, Neue Folge, Heft 20, Springer, Berlin, 1958. MR 0093552 | Zbl 0141.01401
[3] Evans T.: Lattice-ordered loops and quasigroups. J. Algebra 16 (1970), 218-226. DOI 10.1016/0021-8693(70)90026-8 | MR 0263714
[4] Hartman P.A.: Integrally closed and complete ordered quasigroups and loops. Proc. Amer. Math. Soc. 33 (1972), 250-256. DOI 10.1090/S0002-9939-1972-0295985-3 | MR 0295985
[5] Kalhoff F.B., Priess-Crampe S.H.G.: Ordered loops and ordered planar ternary rings. Quasigroups and loops: theory and applications, Sigma Ser. Pure Math. 8, Heldermann, Berlin, 1990, pp.445-465. MR 1125820
[6] Lihová J.: On Riesz groups. Tatra Mt. Math. Publ. 27 (2003), 163-176. MR 2026649 | Zbl 1065.06016
[7] Tararin V.M.: Ordered quasigroups. Izv. Vyssh. Uchebn. Zaved. Mat. 1 (1979), 82-86 (in Russian). MR 0541491
[8] Testov V.A.: Left-positive quasigroups with a lattice order. Webs and quasigroups (in Russian), 153, pp.110-114, Kalinin. Gos. Univ., Kalinin, 1982. MR 0674313
[9] Testov V.A.: Left-positive Riesz quasigroups. Problems in the theory of webs and quasigroups (in Russian), 158, pp.81-83, Kalinin. Gos. Univ., Kalinin, 1985. MR 0857474
[10] Zelinsky D.: Nonassociative valuations. Bull. Amer. Math. Soc. 54 (1948), 175-183. DOI 10.1090/S0002-9904-1948-08980-7 | MR 0023815
[11] Zelinsky D.: On ordered loops. Amer. J. Math. 70 (1948), 681-697. DOI 10.2307/2372206 | MR 0027001
Partner of
EuDML logo