Previous |  Up |  Next

Article

Title: Biembeddings of symmetric configurations and 3-homogeneous Latin trades (English)
Author: Grannell, M. J.
Author: Griggs, T. S.
Author: Knor, M.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 49
Issue: 3
Year: 2008
Pages: 411-420
.
Category: math
.
Summary: Using results of Altshuler and Negami, we present a classification of biembeddings of symmetric configurations of triples in the torus or Klein bottle. We also give an alternative proof of the structure of 3-homogeneous Latin trades. (English)
Keyword: topological embedding
Keyword: torus
Keyword: Klein bottle
Keyword: 6-regular graph
Keyword: symmetric configuration of triples
Keyword: partial Latin square
Keyword: 3-homogeneous Latin trade
MSC: 05B15
MSC: 05B30
MSC: 05C10
idZBL: Zbl 1212.05053
idMR: MR2490436
.
Date available: 2009-05-05T17:12:04Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/119732
.
Reference: [1] Altshuler A.: Construction and enumeration of regular maps on the torus.Discrete Math. 115 (1973), 201-217. Zbl 0253.05117, MR 0321797, 10.1016/S0012-365X(73)80002-0
Reference: [2] Cavenagh N.J.: A uniqueness result for $3$-homogeneous Latin trades.Comment. Math. Univ. Carolin. 47 (2006), 337-358. Zbl 1138.05007, MR 2241536
Reference: [3] Cavenagh N.J., Donovan D.M., Drápal A.: $3$-homogeneous Latin trades.Discrete Math. 300 (2005), 57-70. Zbl 1073.05012, MR 2170114, 10.1016/j.disc.2005.04.021
Reference: [4] Colbourn C.J., Rosa A.: Triple Systems.Clarendon Press, New York, 1999, ISBN: 0-19-853576-7. Zbl 1030.05017, MR 1843379
Reference: [5] Donovan D.M., Drápal A., Lefevre J.G.: Permutation representation of $3$ and $4$-homogeneous Latin bitrades.submitted.
Reference: [6] Figueroa-Centeno R.M., White A.T.: Topological models for classical configurations.J. Statist. Plann. Inference 86 (2000), 421-434. Zbl 0973.05014, MR 1768283, 10.1016/S0378-3758(99)00122-6
Reference: [7] Grannell M.J., Griggs T.S.: Designs and topology.in Surveys in Combinatorics 2007, London Math. Soc. Lecture Note Series 346, Cambridge University Press, Cambridge, 2007, pp.121-174. MR 2252792
Reference: [8] Grannell M.J., Griggs T.S., Knor M.: Biembeddings of Latin squares and Hamiltonian decompositions.Glasgow Math. J. 46 (2004), 443-457. Zbl 1062.05030, MR 2094802, 10.1017/S0017089504001922
Reference: [9] Grannell M.J., Griggs T.S., Knor M.: Biembeddings of symmetric configurations of triples.Proceedings of MaGiA conference, Kočovce 2004, Slovak University of Technology, 2004, pp.106-112.
Reference: [10] Hämäläinen C.: Partitioning $3$-homogeneous latin bitrades.preprint. MR 2390076
Reference: [11] Kirkman T.P.: On a problem of combinations.Cambridge and Dublin Math. J. 2 (1847), 191-204.
Reference: [12] Lawrencenko S., Negami S.: Constructing the graphs that triangulate both the torus and the Klein bottle.J. Combin. Theory Ser. B 77 (1999), 211-218. Zbl 1025.05018, MR 1710539, 10.1006/jctb.1999.1920
Reference: [13] Lefevre J.G., Donovan D.M., Grannell M.J., Griggs T.S.: A constraint on the biembedding of Latin squares.submitted. Zbl 1170.05017
Reference: [14] Negami S.: Uniqueness and faithfulness of embedding of toroidal graphs.Discrete Math. 44 (1983), 161-180. Zbl 0508.05033, MR 0689809, 10.1016/0012-365X(83)90057-2
Reference: [15] Negami S.: Classification of $6$-regular Klein-bottlal graphs.Research Reports on Information Sciences, Department of Information Sciences, Tokyo Institute of Technology A-96 (1984), 16pp.
Reference: [16] White A.T.: Modelling finite geometries on surfaces.Discrete Math. 244 (2002), 479-493. Zbl 0989.05025, MR 1844056, 10.1016/S0012-365X(01)00069-3
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_49-2008-3_4.pdf 224.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo