| Title:
             | 
Biembeddings of symmetric configurations and 3-homogeneous Latin trades (English) | 
| Author:
             | 
Grannell, M. J. | 
| Author:
             | 
Griggs, T. S. | 
| Author:
             | 
Knor, M. | 
| Language:
             | 
English | 
| Journal:
             | 
Commentationes Mathematicae Universitatis Carolinae | 
| ISSN:
             | 
0010-2628 (print) | 
| ISSN:
             | 
1213-7243 (online) | 
| Volume:
             | 
49 | 
| Issue:
             | 
3 | 
| Year:
             | 
2008 | 
| Pages:
             | 
411-420 | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
Using results of Altshuler and Negami, we present a classification of biembeddings of symmetric configurations of triples in the torus or Klein bottle. We also give an alternative proof of the structure of 3-homogeneous Latin trades. (English) | 
| Keyword:
             | 
topological embedding | 
| Keyword:
             | 
torus | 
| Keyword:
             | 
Klein bottle | 
| Keyword:
             | 
6-regular graph | 
| Keyword:
             | 
symmetric configuration of triples | 
| Keyword:
             | 
partial Latin square | 
| Keyword:
             | 
3-homogeneous Latin trade | 
| MSC:
             | 
05B15 | 
| MSC:
             | 
05B30 | 
| MSC:
             | 
05C10 | 
| idZBL:
             | 
Zbl 1212.05053 | 
| idMR:
             | 
MR2490436 | 
| . | 
| Date available:
             | 
2009-05-05T17:12:04Z | 
| Last updated:
             | 
2013-09-22 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/119732 | 
| . | 
| Reference:
             | 
[1] Altshuler A.: Construction and enumeration of regular maps on the torus.Discrete Math. 115 (1973), 201-217. Zbl 0253.05117, MR 0321797, 10.1016/S0012-365X(73)80002-0 | 
| Reference:
             | 
[2] Cavenagh N.J.: A uniqueness result for $3$-homogeneous Latin trades.Comment. Math. Univ. Carolin. 47 (2006), 337-358. Zbl 1138.05007, MR 2241536 | 
| Reference:
             | 
[3] Cavenagh N.J., Donovan D.M., Drápal A.: $3$-homogeneous Latin trades.Discrete Math. 300 (2005), 57-70. Zbl 1073.05012, MR 2170114, 10.1016/j.disc.2005.04.021 | 
| Reference:
             | 
[4] Colbourn C.J., Rosa A.: Triple Systems.Clarendon Press, New York, 1999, ISBN: 0-19-853576-7. Zbl 1030.05017, MR 1843379 | 
| Reference:
             | 
[5] Donovan D.M., Drápal A., Lefevre J.G.: Permutation representation of $3$ and $4$-homogeneous Latin bitrades.submitted. | 
| Reference:
             | 
[6] Figueroa-Centeno R.M., White A.T.: Topological models for classical configurations.J. Statist. Plann. Inference 86 (2000), 421-434. Zbl 0973.05014, MR 1768283, 10.1016/S0378-3758(99)00122-6 | 
| Reference:
             | 
[7] Grannell M.J., Griggs T.S.: Designs and topology.in Surveys in Combinatorics 2007, London Math. Soc. Lecture Note Series 346, Cambridge University Press, Cambridge, 2007, pp.121-174. MR 2252792 | 
| Reference:
             | 
[8] Grannell M.J., Griggs T.S., Knor M.: Biembeddings of Latin squares and Hamiltonian decompositions.Glasgow Math. J. 46 (2004), 443-457. Zbl 1062.05030, MR 2094802, 10.1017/S0017089504001922 | 
| Reference:
             | 
[9] Grannell M.J., Griggs T.S., Knor M.: Biembeddings of symmetric configurations of triples.Proceedings of MaGiA conference, Kočovce 2004, Slovak University of Technology, 2004, pp.106-112. | 
| Reference:
             | 
[10] Hämäläinen C.: Partitioning $3$-homogeneous latin bitrades.preprint. MR 2390076 | 
| Reference:
             | 
[11] Kirkman T.P.: On a problem of combinations.Cambridge and Dublin Math. J. 2 (1847), 191-204. | 
| Reference:
             | 
[12] Lawrencenko S., Negami S.: Constructing the graphs that triangulate both the torus and the Klein bottle.J. Combin. Theory Ser. B 77 (1999), 211-218. Zbl 1025.05018, MR 1710539, 10.1006/jctb.1999.1920 | 
| Reference:
             | 
[13] Lefevre J.G., Donovan D.M., Grannell M.J., Griggs T.S.: A constraint on the biembedding of Latin squares.submitted. Zbl 1170.05017 | 
| Reference:
             | 
[14] Negami S.: Uniqueness and faithfulness of embedding of toroidal graphs.Discrete Math. 44 (1983), 161-180. Zbl 0508.05033, MR 0689809, 10.1016/0012-365X(83)90057-2 | 
| Reference:
             | 
[15] Negami S.: Classification of $6$-regular Klein-bottlal graphs.Research Reports on Information Sciences, Department of Information Sciences, Tokyo Institute of Technology A-96 (1984), 16pp. | 
| Reference:
             | 
[16] White A.T.: Modelling finite geometries on surfaces.Discrete Math. 244 (2002), 479-493. Zbl 0989.05025, MR 1844056, 10.1016/S0012-365X(01)00069-3 | 
| . |