Previous |  Up |  Next


hyperspace topology; Vietoris topology; continuous selection; flow; network
We demonstrate that every Vietoris continuous selection for the hyperspace of at most 3-point subsets implies the existence of a continuous selection for the hyperspace of at most 4-point subsets. However, in general, we do not know if such ``extensions'' are possible for hyperspaces of sets of other cardinalities. In particular, we do not know if the hyperspace of at most 3-point subsets has a continuous selection provided the hyperspace of at most 2-point subsets has a continuous selection.
[1] Engelking R., Heath R.W., Michael E.: Topological well-ordering and continuous selections. Invent. Math. 6 (1968), 150-158. DOI 10.1007/BF01425452 | MR 0244959 | Zbl 0167.20504
[2] García-Ferreira S., Gutev V., Nogura T.: Extensions of 2-point selections. New Zealand J. Math. (2006), to appear. MR 2491681
[3] Gutev V., Nogura T.: Selections and order-like relations. Appl. Gen. Topol. 2 (2001), 205-218. MR 1890037 | Zbl 0993.54019
[4] Gutev V., Nogura T.: Some problems on selections for hyperspace topologies. Appl. Gen. Topol. 5 (2004), 1 71-78. MR 2087281
[5] Gutev V., Nogura T.: Selection problems for hyperspaces. Open Problems in Topology 2 (Elliott Pearl, ed.), Elsevier BV., Amsterdam, 2007, pp.161-170. MR 2367385
[6] Michael E.: Topologies on spaces of subsets. Trans. Amer. Math. Soc. 71 (1951), 152-182. DOI 10.1090/S0002-9947-1951-0042109-4 | MR 0042109 | Zbl 0043.37902
[7] van Mill J., Wattel E.: Selections and orderability. Proc. Amer. Math. Soc. 83 (1981), 3 601-605. DOI 10.1090/S0002-9939-1981-0627702-4 | MR 0627702 | Zbl 0473.54010
Partner of
EuDML logo