Title:
|
On groups of similitudes in associative rings (English) |
Author:
|
Bashkirov, Evgenii L. |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
49 |
Issue:
|
4 |
Year:
|
2008 |
Pages:
|
525-531 |
. |
Category:
|
math |
. |
Summary:
|
Let $R$ be an associative ring with 1 and $R^{\times}$ the multiplicative group of invertible elements of $R$. In the paper, subgroups of $R^{\times}$ which may be regarded as analogues of the similitude group of a non-degenerate sesquilinear reflexive form and of the isometry group of such a form are defined in an abstract way. The main result states that a unipotent abstractly defined similitude must belong to the corresponding abstractly defined isometry group. (English) |
Keyword:
|
associative rings |
Keyword:
|
unipotent elements |
MSC:
|
16U60 |
MSC:
|
20H25 |
idZBL:
|
Zbl 1192.16034 |
idMR:
|
MR2493935 |
. |
Date available:
|
2009-05-05T17:12:56Z |
Last updated:
|
2013-09-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/119743 |
. |
Reference:
|
[1] Bashkirov E.L.: Linear groups that contain a root subgroup.Siberian Math. J. 37 (1996), 5 754-759. MR 1440380, 10.1007/BF02106733 |
Reference:
|
[2] Bashkirov E.L.: Irreducible linear groups of degree four over a quaternion division algebra that contain a subgroup diag$(T_{3}(K,\Phi_{0}),1)$.J. Algebra 287 (2005), 2 319-350. Zbl 1088.20030, MR 2134148, 10.1016/j.jalgebra.2004.09.006 |
Reference:
|
[3] Bashkirov E.L.: Irreducible linear groups of degree four over a quaternion division algebra that contain a root subgroup.Comm. Algebra 34 (2006), 6 1931-1948. Zbl 1110.20038, MR 2235072, 10.1080/00927870500454802 |
Reference:
|
[4] Bashkirov E.L.: Completely reducible linear groups over a quaternion division algebra that contain a root subgroup.Comm. Algebra 35 (2007), 3 1019-1054. Zbl 1118.20049, MR 2305248, 10.1080/00927870601074798 |
Reference:
|
[5] Dieudonné J.: La Géométrie des Groups Classiques.Ergebnisser der Mathematik, Springer, Berlin-New York, 1997. |
Reference:
|
[6] Dixon J.D.: The Structure of Linear Groups.Van Nostrand Reinhold Company, London, 1971. Zbl 0232.20079 |
Reference:
|
[7] Dye R.H.: Maximal subgroups of ${GL}_{2n}(K)$, ${SL}_{2n}(K)$, ${PGL}_{2n}(K)$ and ${PSL}_{2n}(K)$ associated with symplectic polarities.J. Algebra 66 (1980), 1 1-11. Zbl 0444.20036, MR 0591244, 10.1016/0021-8693(80)90110-6 |
Reference:
|
[8] King O.H.: On subgroups of the special linear group containing the special orthogonal group.J. Algebra 96 (1985), 1 178-193. Zbl 0572.20028, MR 0808847, 10.1016/0021-8693(85)90045-6 |
Reference:
|
[9] King O.H.: On subgroups of the special linear group containing the special unitary group.Geom. Dedicata 19 (1985), 3 297-310. Zbl 0579.20040, MR 0815209 |
Reference:
|
[10] O'Meara O.T.: Symplectic Groups.American Mathematical Society, Providence, R.I., 1978. Zbl 0383.20001, MR 0502254 |
Reference:
|
[11] Zalesskiĭ A.E., Serežkin V.N.: Linear groups generated by transvections.Izv. Akad. Nauk SSSR. Ser. Mat. 40 (1976), 1 26-49. MR 0412295 |
. |