Previous |  Up |  Next

Article

Title: Left APP-property of formal power series rings (English)
Author: Liu, Zhongkui
Author: Yang, Xiaoyan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 3
Year: 2008
Pages: 185-189
Summary lang: English
.
Category: math
.
Summary: A ring $R$ is called a left APP-ring if the left annihilator $l_R(Ra)$ is right $s$-unital as an ideal of $R$ for any element $a\in R$. We consider left APP-property of the skew formal power series ring $R[[x; \alpha ]]$ where $\alpha $ is a ring automorphism of $R$. It is shown that if $R$ is a ring satisfying descending chain condition on right annihilators then $R[[x; \alpha ]]$ is left APP if and only if for any sequence $(b_0, b_1, \dots )$ of elements of $R$ the ideal $l_R$ $\big (\sum _{j=0}^{\infty }\sum _{k=0}^{\infty }R\alpha ^k(b_j)\big )$ is right $s$-unital. As an application we give a sufficient condition under which the ring $R[[x]]$ over a left APP-ring $R$ is left APP. (English)
Keyword: left APP-ring
Keyword: skew power series ring
Keyword: left principally quasi-Baer ring
MSC: 16P60
MSC: 16W60
idZBL: Zbl 1203.16031
idMR: MR2462973
.
Date available: 2009-01-29T09:14:47Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/119757
.
Reference: [1] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: A sheaf representation of quasi-Baer rings.J. Pure Appl. Algebra 146 (2000), 209–223. Zbl 0947.16018, MR 1742340, 10.1016/S0022-4049(99)00164-4
Reference: [2] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: On polynomial extensions of principally quasi-Baer rings.Kyungpook Math. J. 40 (2000), 247–254. Zbl 0987.16017, MR 1803098
Reference: [3] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: On quasi-Baer rings.Contemp. Math. 259 (2000), 67–92. Zbl 0974.16006, MR 1778495, 10.1090/conm/259/04088
Reference: [4] Birkenmeier, G. F., Kim, J. Y., Park, J. K.: Principally quasi-Baer rings.Comm. Algebra 29 (2001), 639–660. Zbl 0991.16005, MR 1841988, 10.1081/AGB-100001530
Reference: [5] Fraser, J. A., Nicholson, W. K.: Reduced PP-rings.Math. Japon. 34 (1989), 715–725. Zbl 0688.16024, MR 1022149
Reference: [6] Hirano, Y.: On annihilator ideals of a polynomial ring over a noncommutative ring.J. Pure Appl. Algebra 168 (2002), 45–52. Zbl 1007.16020, MR 1879930, 10.1016/S0022-4049(01)00053-6
Reference: [7] Liu, Z.: A note on principally quasi-Baer rings.Comm. Algebra 30 (2002), 3885–3890. Zbl 1018.16023, MR 1922317, 10.1081/AGB-120005825
Reference: [8] Liu, Z., Ahsan, J.: PP-rings of generalized power series.Acta Math. Sinica 16 (2000), 573–578, English Series. Zbl 1015.16046, MR 1813453
Reference: [9] Liu, Z., Zhao, R.: A generalization of PP-rings and p.q.-Baer rings.Glasgow Math. J. 48 (2006), 217–229. Zbl 1110.16003, MR 2256973, 10.1017/S0017089506003016
Reference: [10] Stenström, B.: Rings of Quotients.Springer-Verlag, Berlin, 1975. MR 0389953
Reference: [11] Tominaga, H.: On $s$-unital rings.Math. J. Okayama Univ. 18 (1976), 117–134. Zbl 0335.16020, MR 0419511
.

Files

Files Size Format View
ArchMathRetro_044-2008-3_2.pdf 421.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo