Previous |  Up |  Next

Article

Title: OD-characterization of almost simple groups related to $L_{2}(49)$ (English)
Author: Zhang, Liangcai
Author: Shi, Wujie
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 3
Year: 2008
Pages: 191-199
Summary lang: English
.
Category: math
.
Summary: In the present paper, we classify groups with the same order and degree pattern as an almost simple group related to the projective special linear simple group $L_{2}(49)$. As a consequence of this result we can give a positive answer to a conjecture of W. J. Shi and J. X. Bi, for all almost simple groups related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$. Also, we prove that if $M$ is an almost simple group related to $L_{2}(49)$ except $L_{2}(49)\cdot 2^{2}$ and $G$ is a finite group such that $|G|=|M|$ and $\Gamma (G)=\Gamma (M)$, then $G\cong M$. (English)
Keyword: almost simple group
Keyword: prime graph
Keyword: degree of a vertex
Keyword: degree pattern
MSC: 20D05
MSC: 20D06
MSC: 20D60
idZBL: Zbl 1204.20006
idMR: MR2462974
.
Date available: 2009-01-29T09:14:51Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/119758
.
Reference: [1] Chen, G. Y.: On structure of Frobenius and $2$-Frobenius group.J. Southwest China Normal Univ. 20 (5) (1995), 485–487, (in Chinese).
Reference: [2] Chen, Z. M., Shi, W. J.: On $C_{p,p}$-simple groups.J. Southwest China Normal Univ. 18 (3) (1993), 249–256, (in Chinese).
Reference: [3] Conway, J. H., Curtis, R. T., Norton, S. P., Parker, R. A., Wilson, R. A.: Atlas of Finite Groups.Clarendon Press (Oxford), London – New York, 1985. Zbl 0568.20001, MR 0827219
Reference: [4] Gorenstein, D.: Finite Groups.Harper and Row, New York, 1980. Zbl 0463.20012, MR 0569209
Reference: [5] Higman, G.: Finite groups in which every element has prime power order.J. London Math. Soc. 32 (1957), 335–342. Zbl 0079.03204, MR 0089205, 10.1112/jlms/s1-32.3.335
Reference: [6] Iiyori, N.: Sharp charaters and prime graphs of finite groups.J. Algebra 163 (1994), 1–8. MR 1257302, 10.1006/jabr.1994.1001
Reference: [7] Kondratev, A. S.: On prime graph components of finite simple groups.Mat. Sb. 180 (6) (1989), 787–797. MR 1015040
Reference: [8] Mazurov, V. D.: The set of orders of elements in a finite group.Algebra and Logic 33 (1) (1994), 49–55. Zbl 0823.20024, MR 1287011, 10.1007/BF00739417
Reference: [9] Mazurov, V. D.: Characterizations of finite groups by sets of orders of their elements.Algebra and Logic 36 (1) (1997), 23–32. Zbl 0880.20007, MR 1454690, 10.1007/BF02671951
Reference: [10] Moghaddamfar, A. R., Zokayi, A. R.: Recognizing finite groups through order and degree pattern.to appear in Algebra Colloquium.
Reference: [11] Moghaddamfar, A. R., Zokayi, A. R., Darafsheh, M. R.: A characterization of finite simple groups by the degrees of vertices of their prime graphs.Algebra Colloq. 12 (3) (2005), 431–442. Zbl 1072.20015, MR 2144997
Reference: [12] Passman, D.: Permutation Groups.Benjamin Inc., New York, 1968. Zbl 0179.04405, MR 0237627
Reference: [13] Shi, W. J.: A new characterization of some simple groups of Lie type.Contemp. Math. 82 (1989), 171–180. Zbl 0668.20019, MR 0982286, 10.1090/conm/082/982286
Reference: [14] Shi, W. J.: A new characteriztion of the sporadic simple groups.Group Theory, Proceeding of the 1987 Singapore Group Theory Conference, Walter de Gruyter, Berlin – New York, 1989, pp. 531–540. MR 0981868
Reference: [15] Shi, W. J.: Pure quantitive characterization of finite simple groups (I).Progr. Natur. Sci. (English Ed.) 4 (3) (1994), 316–326. MR 1402664
Reference: [16] Shi, W. J., Bi, J. X.: A characteristic property for each finite projective special linear group.Lecture Notes in Math. 1456 (1990), 171–180Wi. Zbl 0718.20009, MR 1092230
Reference: [17] Williams, J. S.: Prime graph components of finite groups.J. Algebra 69 (2) (1981), 487–513. Zbl 0471.20013, MR 0617092, 10.1016/0021-8693(81)90218-0
Reference: [18] Yamaki, H.: A conjecture of Frobenius and the sporadic simple groups I.Comm. Algebra 11 (1983), 2513–2518. MR 0733339, 10.1080/00927878308822977
Reference: [19] Yamaki, H.: A conjecture of Frobenius and the simple groups of Lie type I.Arch. Math. 42 (1984), 344–347. Zbl 0528.20024, MR 0753355, 10.1007/BF01246125
Reference: [20] Yamaki, H.: A conjecture of Frobenius and the simple groups of Lie type II.J. Algebra 96 (1985), 391–396. Zbl 0572.20013, MR 0810536, 10.1016/0021-8693(85)90017-1
Reference: [21] Yamaki, H.: A conjecture of Frobenius and the sporadic simple groups II.Math. Comp. 46 (1986), 609–611, Supplement, Math. Comp., 46, 1986), S43-S46. Zbl 0585.20008, MR 0829631
Reference: [22] Zhang, L. C., Shi, W. J.: $OD$-characterization of almost simple groups related to $U_{4}(3)$.to appear. MR 2425165
Reference: [23] Zhang, L. C., Shi, W. J.: $OD$-characterization of simple $K_{4}$-groups.to appear in Algebra Colloquium (in press).
.

Files

Files Size Format View
ArchMathRetro_044-2008-3_3.pdf 507.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo