Previous |  Up |  Next


lines of curvature; line congruence; E. Study’s map; instantaneous revolution axis
Based on the E. Study’s map, a new approach describing instantaneous line congruence during the motion of the Darboux frame on a regular non-spherical and non-developable surface, whose parametric curves are lines of curvature, is proposed. Afterward, the pitch of general line congruence is developed and used for deriving necessary and sufficient condition for instantaneous line congruence to be normal. In terms of this, the derived line congruences and their differential geometric invariants were examined.
[1] Abdel-Baky, R. A.: On the congruences of the tangents to a surface. Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 136 (1999), 9–18. MR 1908813 | Zbl 1017.53003
[2] Abdel-Baky, R. A.: On instantaneous rectilinear congruences. J. Geom. Graph. 7 (2) (2003), 129–135. MR 2071274 | Zbl 1066.53036
[3] Abdel Baky, R. A.: Inflection and torsion line congruences. J. Geom. Graph. 11 (1) (2004), 1–14. MR 2364050
[4] Abdel-Baky, R. A.: On a line congruence which has the parameter ruled surfaces as principal ruled surfaces. Appl. Math. Comput. 151 (2004), 849–862. DOI 10.1016/S0096-3003(03)00541-1 | MR 2052463 | Zbl 1058.53010
[5] Blaschke, W.: Vorlesungen über Differential Geometrie. Dover Publications, New York, 1945. MR 0015247
[6] Bottema, O., Roth, B.: Theoretical Kinematics. North-Holland Press, New York, 1979. MR 0533960 | Zbl 0405.70001
[7] Clifford, W. K.: Preliminary Sketch of bi-quaternions. Proc. London Math. Soc. 4 (64, 65) (1873), 361–395.
[8] Eisenhart, L. P.: A Treatise in Differential Geometry of Curves and Surfaces. New York, Ginn Camp., 1969.
[9] Gugenheimer, H. W.: Differential Geometry. Graw-Hill, New York, 1956.
[10] Gursy, O.: The dual angle of pitch of a closed ruled surface. Mech. Mach. Theory 25 (47) (1990), 131–140. DOI 10.1016/0094-114X(90)90114-Y
[11] Hlavaty, V.: Differential Line Geometry. Groningen, P. Noordhoff Ltd. X, 1953. MR 0057592 | Zbl 0051.39101
[12] Hoschek, J.: Liniengeometrie. B.I. Hochschultaschenbuch, Mannheim, 1971. MR 0353164 | Zbl 0227.53007
[13] Karger, A., Novak, J.: Space Kinematics and Lie Groups. Gordon and Breach Science Publishers, New York, 1985. MR 0801394
[14] Koch, R.: Zur Geometrie der zweiten Grundform der Geradenkongruenzen des $E^3$. Verh. K. Acad. Wet. Lett. Schone Kunsten Belg., Kl. Wet. 43 (162) (1981). MR 0629825
[15] Kose, Ö.: Contributions to the theory of integral invariants of a closed ruled surface. Mech. Mach. Theory 32 (2) (1997), 261–277. DOI 10.1016/S0094-114X(96)00034-1
[16] Mc-Carthy, J. M.: On the scalar and dual formulations of curvature theory of line trajectories. ASME, J. Mech. Transmiss. Automation in Design 109 (1987), 101–106. DOI 10.1115/1.3258772
[17] Muller, H. R.: Kinematik Dersleri. Ankara University Press, 1963. MR 0157519
[18] Schaaf, J. A.: Curvature theory of line trajectories in spatial kinematics. Doctoral dissertation, University of California, Davis (1988). MR 2636385
[19] Schaaf, J. A.: Geometric continuity of ruled surfaces. Comput. Aided Geom. Design 15 (1998), 289–310. DOI 10.1016/S0167-8396(97)00032-0 | MR 1614079 | Zbl 0903.68192
[20] Stachel, H.: Instantaneous spatial kinematics and the invariants of the axodes. Tech. report, Institute für Geometrie, TU Wien 34, 1996.
[21] Veldkamp, G. R.: On the use of dual numbers, vectors, and matrices in instantaneous spatial kinematics. Mech. Mach. Theory 11 (1976), 141–156. DOI 10.1016/0094-114X(76)90006-9
[22] Weatherburn, M. A.: Differential Geometry of Three Dimensions. Cambridge University Press, 1, 1969.
[23] Yang, A. T.: Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms. Doctoral dissertation, Columbia (1967).
Partner of
EuDML logo