Previous |  Up |  Next

Article

Title: A new approach for describing instantaneous line congruence (English)
Author: Abdel-Baky, Rashad A.
Author: Al-Bokhary, Ashwaq J.
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 3
Year: 2008
Pages: 223-236
Summary lang: English
.
Category: math
.
Summary: Based on the E. Study’s map, a new approach describing instantaneous line congruence during the motion of the Darboux frame on a regular non-spherical and non-developable surface, whose parametric curves are lines of curvature, is proposed. Afterward, the pitch of general line congruence is developed and used for deriving necessary and sufficient condition for instantaneous line congruence to be normal. In terms of this, the derived line congruences and their differential geometric invariants were examined. (English)
Keyword: lines of curvature
Keyword: line congruence
Keyword: E. Study’s map
Keyword: instantaneous revolution axis
MSC: 53A04
MSC: 53A05
MSC: 53A17
idZBL: Zbl 1212.53001
idMR: MR2462978
.
Date available: 2009-01-29T09:15:05Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/119762
.
Reference: [1] Abdel-Baky, R. A.: On the congruences of the tangents to a surface.Anz. Österreich. Akad. Wiss. Math.-Natur. Kl. 136 (1999), 9–18. Zbl 1017.53003, MR 1908813
Reference: [2] Abdel-Baky, R. A.: On instantaneous rectilinear congruences.J. Geom. Graph. 7 (2) (2003), 129–135. Zbl 1066.53036, MR 2071274
Reference: [3] Abdel Baky, R. A.: Inflection and torsion line congruences.J. Geom. Graph. 11 (1) (2004), 1–14. MR 2364050
Reference: [4] Abdel-Baky, R. A.: On a line congruence which has the parameter ruled surfaces as principal ruled surfaces.Appl. Math. Comput. 151 (2004), 849–862. Zbl 1058.53010, MR 2052463, 10.1016/S0096-3003(03)00541-1
Reference: [5] Blaschke, W.: Vorlesungen über Differential Geometrie.Dover Publications, New York, 1945. MR 0015247
Reference: [6] Bottema, O., Roth, B.: Theoretical Kinematics.North-Holland Press, New York, 1979. Zbl 0405.70001, MR 0533960
Reference: [7] Clifford, W. K.: Preliminary Sketch of bi-quaternions.Proc. London Math. Soc. 4 (64, 65) (1873), 361–395.
Reference: [8] Eisenhart, L. P.: A Treatise in Differential Geometry of Curves and Surfaces.New York, Ginn Camp., 1969.
Reference: [9] Gugenheimer, H. W.: Differential Geometry.Graw-Hill, New York, 1956.
Reference: [10] Gursy, O.: The dual angle of pitch of a closed ruled surface.Mech. Mach. Theory 25 (47) (1990), 131–140. 10.1016/0094-114X(90)90114-Y
Reference: [11] Hlavaty, V.: Differential Line Geometry.Groningen, P. Noordhoff Ltd. X, 1953. Zbl 0051.39101, MR 0057592
Reference: [12] Hoschek, J.: Liniengeometrie.B.I. Hochschultaschenbuch, Mannheim, 1971. Zbl 0227.53007, MR 0353164
Reference: [13] Karger, A., Novak, J.: Space Kinematics and Lie Groups.Gordon and Breach Science Publishers, New York, 1985. MR 0801394
Reference: [14] Koch, R.: Zur Geometrie der zweiten Grundform der Geradenkongruenzen des $E^3$.Verh. K. Acad. Wet. Lett. Schone Kunsten Belg., Kl. Wet. 43 (162) (1981). MR 0629825
Reference: [15] Kose, Ö.: Contributions to the theory of integral invariants of a closed ruled surface.Mech. Mach. Theory 32 (2) (1997), 261–277. 10.1016/S0094-114X(96)00034-1
Reference: [16] Mc-Carthy, J. M.: On the scalar and dual formulations of curvature theory of line trajectories.ASME, J. Mech. Transmiss. Automation in Design 109 (1987), 101–106. 10.1115/1.3258772
Reference: [17] Muller, H. R.: Kinematik Dersleri.Ankara University Press, 1963. MR 0157519
Reference: [18] Schaaf, J. A.: Curvature theory of line trajectories in spatial kinematics.Doctoral dissertation, University of California, Davis (1988). MR 2636385
Reference: [19] Schaaf, J. A.: Geometric continuity of ruled surfaces.Comput. Aided Geom. Design 15 (1998), 289–310. Zbl 0903.68192, MR 1614079, 10.1016/S0167-8396(97)00032-0
Reference: [20] Stachel, H.: Instantaneous spatial kinematics and the invariants of the axodes.Tech. report, Institute für Geometrie, TU Wien 34, 1996.
Reference: [21] Veldkamp, G. R.: On the use of dual numbers, vectors, and matrices in instantaneous spatial kinematics.Mech. Mach. Theory 11 (1976), 141–156. 10.1016/0094-114X(76)90006-9
Reference: [22] Weatherburn, M. A.: Differential Geometry of Three Dimensions.Cambridge University Press, 1, 1969.
Reference: [23] Yang, A. T.: Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms.Doctoral dissertation, Columbia (1967).
.

Files

Files Size Format View
ArchMathRetro_044-2008-3_7.pdf 515.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo