Previous |  Up |  Next

Article

Title: On a nonconvex boundary value problem for a first order multivalued differential system (English)
Author: Cernea, Aurelian
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 44
Issue: 3
Year: 2008
Pages: 237-244
Summary lang: English
.
Category: math
.
Summary: We consider a boundary value problem for first order nonconvex differential inclusion and we obtain some existence results by using the set-valued contraction principle. (English)
Keyword: boundary value problem
Keyword: differential inclusion
Keyword: contractive set-valued map
Keyword: fixed point
MSC: 34A60
MSC: 34B15
MSC: 47N20
idZBL: Zbl 1212.34021
idMR: MR2462979
.
Date available: 2009-01-29T09:15:08Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/119763
.
Reference: [1] Boucherif, A., Merabet, N. Chiboub-Fellah: Boundary value problems for first order multivalued differential systems.Arch. Math. (Brno) 41 (2005), 187–195. MR 2164669
Reference: [2] Castaing, C., Valadier, M.: Convex Analysis and Measurable Multifunctions.Springer-Verlag, Berlin, 1977. Zbl 0346.46038, MR 0467310
Reference: [3] Cernea, A.: Existence for nonconvex integral inclusions via fixed points.Arch. Math. (Brno) 39 (2003), 293–298. Zbl 1113.45014, MR 2032102
Reference: [4] Cernea, A.: An existence result for nonlinear integrodifferential inclusions.Comm. Appl. Nonlinear Anal. 14 (2007), 17–24. MR 2364691
Reference: [5] Cernea, A.: On the existence of solutions for a higher order differential inclusion without convexity.Electron. J. Qual. Theory Differ. Equ. 8 (2007), 1–8. Zbl 1123.34046, MR 2295686
Reference: [6] Covitz, H., Nadler jr., S. B.: Multivalued contraction mapping in generalized metric spaces.Israel J. Math. 8 (1970), 5–11. MR 0263062, 10.1007/BF02771543
Reference: [7] Kannai, Z., Tallos, P.: Stability of solution sets of differential inclusions.Acta Sci. Math. (Szeged) 61 (1995), 197–207. Zbl 0851.34015, MR 1377359
Reference: [8] Lim, T. C.: On fixed point stability for set valued contractive mappings with applications to generalized differential equations.J. Math. Anal. Appl. 110 (1985), 436–441. Zbl 0593.47056, MR 0805266, 10.1016/0022-247X(85)90306-3
Reference: [9] Tallos, P.: A Filippov-Gronwall type inequality in infinite dimensional space.Pure Math. Appl. 5 (1994), 355–362. MR 1343457
.

Files

Files Size Format View
ArchMathRetro_044-2008-3_8.pdf 426.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo