Previous |  Up |  Next

Article

Title: On four-point regular BVPs for second-order quasi-linear ODEs (English)
Author: Andres, Ján
Author: Vlček, Vladimír
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 31
Issue: 1
Year: 1992
Pages: 37-44
.
Category: math
.
MSC: 34B10
MSC: 34B15
idZBL: Zbl 0769.34019
idMR: MR1212604
.
Date available: 2009-01-29T15:38:41Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120279
.
Reference: [1] J. Andres: A four-point boundary value problem for the second-order ordinary differential equations.Arch. Math. (Basel) 53 (1989), 384-389. Zbl 0667.34024, MR 1016002
Reference: [2] I. Bihari: Notes on a nonlinear integral equation.Stud. Sci. Math. Hung. 2 (1967), 1-6. Zbl 0147.10302, MR 0211231
Reference: [3] L. Collatz: Funkcionální analýza a numerická matematika.SNTL, Praha 1970.
Reference: [4] A. G. Lomtatidze: On a singular three-point boundary value problem.Trudy IPM Tbilisi 17 (1986), 122-134 (Russian). Zbl 0632.34011, MR 0853277
Reference: [5] M. A. Neumark: Lineare Differentialoperatoren.VEB DVW, Berlin 1960. Zbl 0092.07902, MR 0216049
Reference: [6] I. Rachůnková: A four-point problem for ordinary differential equations of the second order.Arch. Math. (Brno) 25, 4 (1989), 175-184. MR 1188062
Reference: [7] I. Rachůnková: Existence and uniqueness of solutions of four-point boundary value problems for 2nd order differential equations.Czech. Math. J. 39 (1989), 692-700. MR 1018005
Reference: [8] G. F. Roach: Green’s functions.Cambridge Univ. Press, Cambridge 1982. Zbl 0522.65075
.

Files

Files Size Format View
ActaOlom_31-1992-1_5.pdf 685.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo