Previous |  Up |  Next

Article

Title: On a class of functional boundary value problems for third-order functional differential equations with parameter (English)
Author: Staněk, Svatoslav
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 31
Issue: 1
Year: 1992
Pages: 71-82
.
Category: math
.
MSC: 34B15
MSC: 34K10
idZBL: Zbl 0777.34047
idMR: MR1212607
.
Date available: 2009-01-29T15:38:52Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120282
.
Reference: [1] A.R. Aftabizadeh, J. Wiener: Existence and uniqueness theorems for third order boundary value problems.Rend. Sem. Mat. Univ. Padova, 75, 1986, 130-141. Zbl 0611.34005, MR 0847662
Reference: [2] R.P. Agarwal, R.P. Krissnamurthy: On the uniqueness of solution of nonlinear boundary value problems.J. Math. Phys. Sci. 10, 1976, 17-31. MR 0417478
Reference: [3] R.P. Agarwal: On boundary value problems for y''' =f(x,y,y',y'´).Bull. of the Institut of Math. Acad. Sinica, 12, 1984, 153-157. MR 0765109
Reference: [4] J. Andres: On a boundary value problem for x'''=f(t,x,x',x'').Acta UPO, Fac. rer. nat., Vol.91, Math. XXVII, 1988, 289-298. Zbl 0712.34032, MR 1039896
Reference: [5] D. Barr, T. Sherman: Existence and uniqueness of solutions of three point boundary value problems.J. Diff. Eqs., 13, 1973, 197-212. Zbl 0261.34014, MR 0333326
Reference: [6] J. Bebernes: A sub-function approach to boundary value problems for nonlinear ordinary differential equations.Pacific J. Math. 13, 1963, 1063-1066. MR 0156018
Reference: [7] S.A. Bespalova, J.A. Klokov: A three-point boundary value problem for a third order nonlinear ordinary differential equations.(in Russian). Differenciaľnye Uravnenija, 12, 1976, 963-970. MR 0425230
Reference: [8] G. Carristi: A three-point boundary value problem for third order differential equation.Boll.Unione Mat. Ital., C4, 1, 1985, 259-269.
Reference: [9] K.M. Das, B.S. Lalli: Boundary value problems for y' ' ' = f(x,y,y' ,y' ' ).J. Math. Annal. Appl., 81, 1981, 300-307. Zbl 0465.34012, MR 0622819
Reference: [10] A. Granas R. Guenther, L. Lee: Nonlinear Boundary Value Problems for Ordinary Differential Equations.Polish Acad. of Sciences, 1985.
Reference: [11] M. Greguš: Third Order Linear Differential Equtation.Veda 1981 (Slovak), Bratislava. MR 0657356
Reference: [12] C.P. Gupta: On a third-order three-point boundary value problem at rezonance.Diff. Int. Equations, Vol.2, 1 (1989),1-12. MR 0960009
Reference: [13] J. Henderson, L. Jackson: Existence and uniqueness of solutions of k-point boundary value problems for ordinary differential equations.J. Diff. Eqs., 48, 1970, 373-385. MR 0702426
Reference: [14] J. Henderson: Best interval lengths for boundary value problems for third order Lipschitz equations.SIAM J. Math. Anal.,18, 1987, 293-305. Zbl 0668.34017, MR 0876272
Reference: [15] L. Jackson, K. Schrader: Subfunctions and third order differential inequalities.J. Diff. Eqs., 8, 1970, 180-194. Zbl 0194.40902, MR 0257525
Reference: [16] L. Jackson, K. Schrader: Existence and uniqueness of solution of boundary value problems for third order differential equations.J. Diff. Eqs., 9, 1971, 46-54. MR 0269920
Reference: [17] L. Jackson: Existence and uniqueness of solutions of boundary value problems for third order differential equations.J. Diff. Eqs., 13, 1973, 432-437. Zbl 0256.34018, MR 0335925
Reference: [18] I.T. Kiguradze: Boundary Problems for Systems of Ordinary Differential Equations.(in Russian). Itogi nauki i tech..Sovr. problemy mat., 30, Moscow 1987. MR 0925829
Reference: [19] G.A. Klassen: Differential inequalities and existence theorems for second and third order boundary value problems.J. Diff. Eqs., 10, 1971, 529-537. MR 0288397
Reference: [20] G.A. Klassen: Existence theorems for boundary value problems for n-th order ordinary differential equation.Rocky Mountain J. Math., 3, 1973, 457-472. MR 0357944
Reference: [21] E. Lepina, A. Lepin: Existence of a solution of the three-point BVP for a non-linear third order ordinary differential equation.(in Russian). Latv. Mat. Ezheg., 4, 1968, 247-256.
Reference: [22] E. Lepina, A. Lepin: Necessary and sufficient conditions for existence of a solution of a three-point BVP for a nonlinear third order differential equation.(in Russian). Latv. Mat. Ezheg., 8, 1970, 149-154.
Reference: [23] K.N. Murthy, K.S. Rao: On existence and uniqueness of solutions of two and three point boundary value problems.Bull.Calcutta Math. Soc., 73, 3 (1981), 165-172. MR 0669619
Reference: [24] K.N. Murthy, C.N. Prasad: Three-point boundary value problems, existence and uniqueness.Yokohama Math. J., 29, 1981, 101-105. MR 0649612
Reference: [25] B.G. Pachpatte: On a certain boundary value problem for third order differential equations.An. Sti.Univ. "Al.I.Cuza" Iasi Sect. Ia Mat, XXXXII, 1, 1986, 55-61. Zbl 0619.34024, MR 0893027
Reference: [26] L.I. Pospelov: Necessary and sufficient conditions for existence of a solutions for some BVPs for the third order nonlinear ordinary differential equation.(in Russian). Latv. Math. Ezheg., 8, 1970, 205-213.
Reference: [27] D.J. O’Regan: Topological transversality. Applications to third order boundary value problems.SIAM J. Math. Anal., 18, 1987, 630-641. MR 0883557
Reference: [28] J. Rusnák: A three-point boundary value problem for third order differential equations.Math. Slovaca, 33, 1983, 247-256. MR 0713954
Reference: [29] J. Rusnák: Method of successive approximations for certain non-linearthird order boundary value problem.Acta UPO, Fac. rer. nat., Math. XXVI, 88, 1987, 161-168. MR 1033337
Reference: [30] J. Rusnák: Constructions of lower and upper solutions for a nonlinear boundary value problem of the third order and their applications.Math. Slovaca, 40, No.1, 1990, 101-110. MR 1094976
Reference: [31] S. Staněk: Three-point boundary value problem for nonlinear third-order differential equations with parameter.Acta UPO, Fac. rer. nat., Math. XXX, (1991) 61-74. MR 1166426
Reference: [32] S. Staněk: Three point boundary value problem for nonlinear second-order differential equations with parameter.Czech.Math. J. 42 (117), 1992, 241-256. MR 1179496
Reference: [33] S. Staněk: On a class of five-point boundary value problems in second-order functional differential equations with parameter.(to appear). MR 1250906
Reference: [34] N.I. Vasilev, J.A. Klokov: Elements of the Theory of Boundary Value Problems for Ordinary Differential Equations.(in Russian). Riga 1978.
.

Files

Files Size Format View
ActaOlom_31-1992-1_8.pdf 1.398Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo