Previous |  Up |  Next

Article

Title: On certain three-point regular boundary value problems for nonlinear second-order differential equations depending on the parameter (English)
Author: Staněk, Svatoslav
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 33
Issue: 1
Year: 1994
Pages: 125-132
.
Category: math
.
MSC: 34B10
MSC: 34B15
idZBL: Zbl 0845.34031
idMR: MR1385753
.
Date available: 2009-01-29T15:47:23Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120306
.
Reference: [1] Arscott F. M.: Two-parameter eigenvalue problems in differential equations.Proc. London Math. Soc. (3), 14, 1964, 459-470. Zbl 0121.31102, MR 0165164
Reference: [2] Deimling K.: Nonlinear Functional Analysis.Springer-Verlag Berlin, Heidelberg, 1985. Zbl 0559.47040, MR 0787404
Reference: [3] Greguš M., Neuman F., Arscott F. M.: Three-point boundary value problems in differential equations.J. London Math. Soc. (2), 3, 1971, 429-436. MR 0283282
Reference: [4] Hartman P.: Ordinary Differential Equations.J. Wiley, New York, 1964. Zbl 0125.32102, MR 0171038
Reference: [5] Staněk S.: Three point boundary value problem for nonlinear second-order differential equations with parameter.Czech. Math. J., 42 (117), 1992, 241-256. MR 1179496
Reference: [6] Staněk S.: On a class of five-point boundary value problems in second-order functional differential equations with parameter.Acta Math. Hungar. 62 (3-4), 1993, 253-262. Zbl 0801.34064, MR 1250906
Reference: [7] Staněk S.: Multi-point boundary value problem for a class of functional differential equations with parameter.Math. Slovaca No. 1, 42 (1992), 85-96. MR 1159493
Reference: [8] Šeda V.: A correct problem at a resonance.Differential and Integral Eqs. 2, 4 (1989), 389-396. MR 0996746
.

Files

Files Size Format View
ActaOlom_33-1994-1_14.pdf 676.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo