Previous |  Up |  Next

Article

Title: Polynomial mappings of polynomial structures with simple roots (English)
Author: Vanžura, Jiří
Author: Vanžurová, Alena
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 33
Issue: 1
Year: 1994
Pages: 157-164
.
Category: math
.
MSC: 53C05
MSC: 53C15
idZBL: Zbl 0854.53024
idMR: MR1385756
.
Date available: 2009-01-29T15:47:35Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120309
.
Reference: [1] Bureš J.: Some algebraically related almost complex and almost tangent structures on differentiable manifolds.Coll. Math. Soc. J. Bolyai, 31 Diff. Geom., Budapest 1979, 119-124.
Reference: [2] Bureš J., Vanžura J.: Simultaneous integrability of an almost complex and almost tangent structure.Czech. Math. Jour., 32 (107), 1982, 556-581. MR 0682132
Reference: [3] Goldberg S. I., Yano K.: Polynomial structures on manifolds.Ködai Math. Sem. Rep. 22, 1970, 199-218. Zbl 0194.52702, MR 0267478
Reference: [4] Ishihara S.: Normal structure $f$ satisfying $f^3 + f = 0$.Ködai Math. Sem. Rep. 18, 1966, 36-47. MR 0210023
Reference: [5] Kubát V.: Simultaneous integrability of two J-related almost tangent structures.CMUC (Praha) 20, 3, 1979, 461-473. Zbl 0436.53032, MR 0550448
Reference: [6] Lehmann-Lejeune J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangent.Ann. Inst. Fourier 16, 2, Grenoble 1966, 329-387. Zbl 0145.42103, MR 0212720
Reference: [7] Opozda B.: Almost product and almost complex structures generated by polynomial structures.Acta Math. Jagellon. Univ. XXIV, 1984, 27-31. Zbl 0582.53032, MR 0815882
Reference: [8] Vanžura J.: Integrability conditions for polynomial structures.Ködai Math. Sem. Rep. 27, 1976, 42-50 MR 0400106
Reference: [9] Vanžurová A.: Polynomial structures on manifolds.Ph.D. thesis, 1974.
Reference: [10] Vanžurová A.: On polynomial structures and their G-structures.(to appear).
Reference: [11] Yano K.: On a structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$.99-109. MR 0159296
.

Files

Files Size Format View
ActaOlom_33-1994-1_17.pdf 704.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo