Previous |  Up |  Next

Article

Title: On the relationship between the initial and the multipoint boundary value problems for $n$-th-order linear differential equations of neutral type (English)
Author: Pirč, Viktor
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 37
Issue: 1
Year: 1998
Pages: 99-106
.
Category: math
.
MSC: 34K06
MSC: 34K10
MSC: 34K40
idZBL: Zbl 0961.34070
idMR: MR1690478
.
Date available: 2009-01-29T15:55:01Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120387
.
Reference: [1] Gel’fond A. O.: Calculus of Finite Differences.Moscow 1952 (in Russian). Delhi 1971 (in English). MR 0053352
Reference: [2] Haščák A.: Disconjugacy and Multipoint Boundary Value Problems for Linear Differential Equations with Delay.Czech. Math. J. 39, 14 (1989), 70-77. MR 0983484
Reference: [3] Haščák A.: Tests for Disconjugacy and Strict Disconjugacy of Linear Differential Equations with Delays.Czech. Math. J. 114, 39 (1989), 225-231. MR 0992129
Reference: [4] Haščák A.: On the Relationship between the Initial and Multipoint Boundary Value Problems for n-th Order Linear Differential Equations with Delay.Arch. Math. (Brno) 26, 4 (1990), 207-214. MR 1188972
Reference: [5] Haščák A.: Disconjugacy and Multipoint Boundary Value Problems for Linear Differential Equations of Neutral Type.Journal of Mathematical Analysis and Applications 199 (1996), 323-333. MR 1383224
Reference: [6] Haščák A.: Test for Disconjugacy of a Differential Inclusion of Neutral Type.Georgian Math. J. 4, 2 (1997), 101-108. MR 1439588
Reference: [7] Lasota A.: A Note on the Relationship between the Initial and the Boundary Value Problems for Ordinary Differential Equations of the n-th Order.Zeszity naukowe Universsitetu Jagielonskiego 22 (1959), Poland, 59-65 (in Polish). MR 0142817
Reference: [8] Norkin S. B.: Differential Equations of Second Order with Deviating Arguments.Nauka, Moscow, 1965. MR 0199512
Reference: [9] Staněk S.: On some Boundary Value Problems for Second Order Functional Differential Equations.Nonlinear Analysis, Theory, Methods and Applications 28, 3 (1997), 539-546. MR 1420798
Reference: [10] Staněk S.: On a Class of Functional Boundary Value Problems for Second-order Functional Differential Equations with Parameter.Czech. Math. J. 43, 118 (1993), 339-348. MR 1211756
Reference: [11] Rachůnková I., Staněk S.: Topological Degree Method in Functional Boundary Value Problems.Nonlin. Anal. 27 (1996), 271-285. MR 1391437
Reference: [12] Rachůnková I., Staněk S.: Topological Degree Method in Functional Boundary Value Problems at Resonance.Nonlin. Anal. 28 (1997), 539-546. MR 1391437
.

Files

Files Size Format View
ActaOlom_37-1998-1_9.pdf 814.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo