Previous |  Up |  Next

Article

Title: Some algorithm for testing convexity of histogram (English)
Author: Ženčák, Pavel
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 38
Issue: 1
Year: 1999
Pages: 149-163
.
Category: math
.
MSC: 41A29
MSC: 65D05
idZBL: Zbl 0961.41007
idMR: MR1767215
.
Date available: 2009-01-29T15:56:14Z
Last updated: 2012-05-03
Stable URL: http://hdl.handle.net/10338.dmlcz/120395
.
Reference: [1] Beatson R. K., Wolkowics H.: Post-processing piecewise cubics for monotonicity.SIAM J. Numer. Anal. 26, 2 (1989), 480-502. MR 0987403
Reference: [2] de. Boor C., Swartz B.: Piecewise monotone interpolаtion.Journal of Approximation Theory 21 (1977), 411-416. MR 0481727
Reference: [3] Costantini P., Morandi R.: Monotone аnd convex spline interpolаtion.Calcolo 21 (1984), 281-294. MR 0799625
Reference: [4] Costantini P.: On monotone аnd convex spline interpolаtion.Mathematics of Computing 46, 173 (1986), 203-214. MR 0815841
Reference: [5] Eisenstst S. C., Jackson K. R., Lewis J. W.: The order of monotone piecewise cubic interpolаtion.SIAM J. Numer. Anal. 22, 6 (1988), 1220-1237. MR 0811195
Reference: [6] Fritsch F. N., Carlson R. E.: Monotone piecewise cubic interpolаtion.SIAM J. Numer. Anal. 17, 2 (1980), 238-246. MR 0567271
Reference: [7] Hess W., Schmidt J. W.: Direct methods for constructing positive spline interpolаtion.In: Wavelets, Images and Surface Fitting, P. J. Laurent, A. Le Méhauté, L. L. Schumaker (eds.), 1994, 287-294. MR 1302251
Reference: [8] Hess W., Schmidt J. W.: Convex C3 interpolаtion with quаrtic splines on threefold refined grids.Preprint ТU Dresden, 1994, MAТH-NM-12-1994.
Reference: [9] Hess W., Schmidt J. W.: Shаpe preserving C3 dаtа interpolаtion аnd C2 histopolаtion with splines on threefold refined grids.Submitted to ZAMM, 1995.
Reference: [10] Lahtinen A.: Positive Hermite interpolаtion by quаdrаtic splines.SIAM J. Numer. Anal. 24, 1 (1993), 223-233. MR 1199536
Reference: [11] Mulansky B., Schmidt J. W.: Constructive methods in convex interpolаtion using quаrtic splines.Numerical Algorithms 12 1996, 111-124. MR 1423551
Reference: [12] Sakai M., Usmani R. A.: A shаpe preserving аreа true аpproximаtion of histogrаm by rаtionаl splines.BIТ 28 (1988), 329-339. MR 0938397
Reference: [13] Schmidt J. W., Hess W.: Schwach verkoppelte ungleichungsysteme und konvexe Spline-Interpolation.Elem. Math. 39 (1984), 85-95. MR 0803063
Reference: [14] Schmidt J. W., Hess W.: Positivity of cubic polynomials on intervals and positive spline interpolation.BIT 28 (1988), 340-352 Zbl 0642.41007, MR 0938398
Reference: [15] Schmidt J. W., Hess W., Nordheim, Th.: Shape preserving histopolation using rational quadratic splines.Computing 44 (1990), 245-258. Zbl 0721.65002, MR 1058701
Reference: [16] Schmidt J. W., Hess W.: Shape preserving C2 -spline histopolation.Journal of Approximation Theory 75, 3 (1993), 325-345. MR 1250544
Reference: [17] Schmidt J. W.: Staircase algorithm and construction of convex interpolants up to the continuity C3.In: Computers Mathematics Applications, P. Rózsa, J. W. Schmidt, B. A. Szabó (guest) eds., 1995.
Reference: [18] Schmidt J. W.: Dual algorithms for convex approximations of histograms using cubic C1 splines.Numerical Analysis and Mathematical Modelling 29 (1994), 35-44. MR 1272917
Reference: [19] Spaeth H.: Eindimensionale Spline-Interpolations-Algorithmen.Oldenbourgh Verlag, 1990. Zbl 0701.41015, MR 1208909
Reference: [20] Yan Z.: Piecewise cubic curve fitting algorithm.Math. Comp. 49, 179 (1987), 203-213. Zbl 0633.65012, MR 0890262
.

Files

Files Size Format View
ActaOlom_38-1999-1_16.pdf 1.250Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo