Previous |  Up |  Next

Article

Title: Convex sets in algebras (English)
Author: Bělohlávek, Radim
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 41
Issue: 1
Year: 2002
Pages: 21-33
.
Category: math
.
MSC: 08A05
MSC: 08A30
MSC: 08A40
MSC: 08B05
idZBL: Zbl 1040.08003
idMR: MR1967336
.
Date available: 2009-01-29T16:02:05Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/120451
.
Reference: [1] Agliano P., Ursini A.: On subtractive varieties II: General properties.Algebra Universalis 36 (1996), 222-259. Zbl 0902.08010, MR 1402514
Reference: [2] Agliano P., Ursini A.: On subtractive varieties III: From ideals to congruences.Algebra Universalis 37 (1997), 296-333. Zbl 0906.08005, MR 1452404
Reference: [3] Bělohlávek R., Chajda I.: A polynomial characterization of congruence classes.Algebra Universalis 37 (1997), 235-242. MR 1441388
Reference: [4] Chajda I.: Regularity and permutability of congruences.Algebra Universalis 17 (1983), 170-173. Zbl 0537.08006, MR 0726270
Reference: [5] Fraser G. A., Horn A.: Congruence relations in direct products.Proc. Amer. Math. Soc. 26 (1970), 390-394. Zbl 0241.08004, MR 0265258
Reference: [6] Mal'cev A. I.: On the general theory of algebraic systems.Matem. Sbornik 35 (1954), 3-20 (in Russian). MR 0065533
Reference: [7] Ursini A: Sulle varietà di algebre con buona teoria degli ideali.Boll. U. M. I. 6, 4 (1972), 90-95. MR 0314728
Reference: [8] Ursini A.: On subtractive varieties I.Algebra Universalis 31 (1994), 204-222. Zbl 0799.08010, MR 1259350
Reference: [9] Wille R.: Kongruenzklassengeometrien.Lecture Notes in Math. 113, Springer-Verlag, Berlin-New York, 1970. Zbl 0191.51403, MR 0262149
.

Files

Files Size Format View
ActaOlom_41-2002-1_3.pdf 1.423Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo