Previous |  Up |  Next

Article

Title: Reflexive relations and Mal'tsev conditions for congruence lattice identities in modular varieties (English)
Author: Czédli, Gábor
Author: Horváth, Eszter K.
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 41
Issue: 1
Year: 2002
Pages: 43-53
.
Category: math
.
MSC: 08B05
MSC: 08B10
idZBL: Zbl 1038.18001
idMR: MR1967339
.
Date available: 2009-01-29T16:02:16Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/120454
.
Reference: [1] Czédli G., Freese R.: On congruence distributivity and modularity.Algebra Universalis 17 (1983), 216-219. Zbl 0548.08003, MR 0726275
Reference: [2] Czédli G., Horváth E. K.: Congruence distributivity and modularity permit tolerances.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math., to appear. Zbl 1043.08002, MR 1967338
Reference: [3] Czédli G., Horváth E. K.: All congruence lattice identities implying modularity have Mal’tsev conditions.Algebra Universalis, to appear. Zbl 1091.08007
Reference: [4] Day A.: A characterization of modularity for congruence lattices of algebras.Canad. Math. Bull. 12 (1969), 167-173. MR 0248063
Reference: [5] Day A.: p-modularity implies modularity in equational classes.Algebra Universalis 3 (1973), 398-399. Zbl 0288.06012, MR 0354497
Reference: [6] Day A., Freese R.: A characterization of identities implying congruence modularity.I. Canad. J. Math. 32 (1980), 1140-1167. Zbl 0414.08003, MR 0596102
Reference: [7] Freese R., McKenzie R.: Commutator theory for congruence modular varieties.London Mathematical Society Lecture Note Series, 125, Cambridge University Press, Cambridge, 1987. iv+227. Zbl 0636.08001, MR 0909290
Reference: [8] Freese R., Nation J. B.: 3,3 Lattice inclusions imply congruence modularity.Algebra Universalis 7 (1977), 191-194. Zbl 0384.08006, MR 0434906
Reference: [9] Gedeonová E.: A characterization of p-modularity for congruence lattices of algebras.Acta Fac. Rerum Natur. Univ. Comenian. Math. Publ. 28 (1972), 99-106. Zbl 0264.06008, MR 0313169
Reference: [10] Grätzer G.: Two Mal’cev-type theorems in universal algebra.J. Combinatorial Theory 8 (1970), 334-342.
Reference: [11] Gumm H. P.: Geometrical methods in congruence modular algebras.Mem. Amer. Math. Soc. 45, 286 (1983), viii+79. Zbl 0547.08006, MR 0714648
Reference: [12] Herrmann C., Huhn A. P.: Zum Begriff der Charakteristik modularer Verbände.Math. Z. 144 (1975), 185-194. Zbl 0316.06006, MR 0384630
Reference: [13] Herrmann C., Huhn A. P.: Lattices of normal subgroups which are generated by frames.In: Lattice Theory, Proc. Conf. Szeged 1974, Coll. Math. Soc. J. Bolyai 12, North-Holland, Amsterdam 1976, 97-136. MR 0447064
Reference: [14] Huhn A. P.: Schwach distributive Verbände.I. Acta Sci. Math. (Szeged) 33 (1.972), 297-305 (in German). Zbl 0536.08002, MR 0337710
Reference: [15] Huhn A. P.: On Gratzer's problem concerning automorphisms of a finitely presented lattice.Algebra Universalis 5 (1975), 65-71. MR 0392713
Reference: [16] Hutchinson G., Czédli G.: A test for identities satisfied in lattices of submodules.Algebra Universalis 8 (1978), 269-309. MR 0469840
Reference: [17] Jónsson B.: Algebras whose congruence lattices are distributive.Math. Scandinavica 21 (1967), 110-121. MR 0237402
Reference: [18] Jónsson B.: Congruence varieties.Algebra Universalis 10 (1980), 355-394. MR 0564122
Reference: [19] McKenzie R.: Equational bases and nonmodular lattice varieties.Trans. Amer. Math. Soc. 174 (1972), 1-43. MR 0313141
Reference: [20] Mederly P.: Three Mal’cev type theorems and their application.Mat. časopis SAV 25 (1975), 83-95. Zbl 0302.08003, MR 0384650
Reference: [21] Nation J. B.: Varieties whose congruences satisfy certain lattice identities.Algebra Universalis 4 (1974), 78-88. Zbl 0299.08002, MR 0354501
Reference: [22] Neumann W. D.: On Malcev conditions.J. Austral. Math. Soc. 17 (1974), 376-384. Zbl 0294.08004, MR 0371781
Reference: [23] Pálfy P. P., Szabó, Cs.: An identity for subgroup lattices of abelian groups.Algebra Universalis 33 (1995), 191-195. Zbl 0820.06003, MR 1318983
Reference: [24] Pixley A. F.: Local Malcev conditions.Canad. Math. Bull. 15 (1972), 559-568. Zbl 0254.08009, MR 0309837
Reference: [25] Snow J. W.: Mal’tsev conditions and relations on algebras.Algebra Universalis 42 (1999), 299-309. Zbl 0979.08004, MR 1759488
Reference: [26] Taylor W.: Characterizing Mal’cev conditions.Algebra Universalis 3 (1973), 351-397. Zbl 0304.08003, MR 0349537
Reference: [27] Wille R.: Kongruenzklassengeometrien.Lecture Notes in Mathematics 113, Springer-Verlag, Berlin-New York, 1970, iii+99 (in German). Zbl 0191.51403, MR 0262149
.

Files

Files Size Format View
ActaOlom_41-2002-1_6.pdf 1.026Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo