Previous |  Up |  Next

Article

Title: On the diophantine equation $xy+yz+zx=d$ (English)
Author: Louboutin, S.
Author: Newman, M. F.
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 6
Issue: 1
Year: 1998
Pages: 155-158
.
Category: math
.
MSC: 11D09
MSC: 11E04
MSC: 11R11
MSC: 11R29
idZBL: Zbl 1024.11015
idMR: MR1822526
.
Date available: 2009-01-30T09:06:40Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120528
.
Reference: [Cai] T. Cai: On the diophantine equation $xy+yz+zx = m$.Publ. Math. Debrecen 45 (1994), 131-132. Zbl 0864.11015, MR 1291808
Reference: [Cox] D. Cox: Primes of the form $x^2 + ny^2$.John Wiley & Sons (1989). MR 1028322
Reference: [Hal] N. A. Hall: Binary quadratic discriminants with a single class of forms in each gennus.Math. Zeit. 44 (1938), 85-90. 10.1007/BF01210641
Reference: [HBP] Al-Zaid Hassan B. Brindza, Á. Pintér: On positive integer solutions of the equation $xy + yz + xz = n$.Canad. Math. Bull. 39 (1996), 199-202. MR 1390355, 10.4153/CMB-1996-024-5
Reference: [Kov] K. Kovács: About some positive solutions of the diophantine equation $\sum_{1\leq i<j\leq n} a_ia_j = m$.Publ Math. Debrecen 40 (1992), 207-210. MR 1181363
Reference: [Lou] S. Louboutin: Minorations (sous ľhypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires.Application, C. R. Acad. Sci. Paris 310 (1990), 795-800. MR 1058499
Reference: [Mor] L. J. Mordell: Diophantine equations.Chapter 30, Section 2 : The equation xy + yz + zx = d, Academic Press (1969). Zbl 0188.34503, MR 0249355
Reference: [Tat] T. Tatuzawa: On a theorem of Siegel.Japan J. Math. 21 (1951), 163-178. Zbl 0054.02302, MR 0051262
.

Files

Files Size Format View
ActaOstrav_06-1998-1_19.pdf 583.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo