| Title:
|
On the diophantine equation $xy+yz+zx=d$ (English) |
| Author:
|
Louboutin, S. |
| Author:
|
Newman, M. F. |
| Language:
|
English |
| Journal:
|
Acta Mathematica et Informatica Universitatis Ostraviensis |
| ISSN:
|
1211-4774 |
| Volume:
|
6 |
| Issue:
|
1 |
| Year:
|
1998 |
| Pages:
|
155-158 |
| . |
| Category:
|
math |
| . |
| MSC:
|
11D09 |
| MSC:
|
11E04 |
| MSC:
|
11R11 |
| MSC:
|
11R29 |
| idZBL:
|
Zbl 1024.11015 |
| idMR:
|
MR1822526 |
| . |
| Date available:
|
2009-01-30T09:06:40Z |
| Last updated:
|
2013-10-22 |
| Stable URL:
|
http://hdl.handle.net/10338.dmlcz/120528 |
| . |
| Reference:
|
[Cai] T. Cai: On the diophantine equation $xy+yz+zx = m$.Publ. Math. Debrecen 45 (1994), 131-132. Zbl 0864.11015, MR 1291808 |
| Reference:
|
[Cox] D. Cox: Primes of the form $x^2 + ny^2$.John Wiley & Sons (1989). MR 1028322 |
| Reference:
|
[Hal] N. A. Hall: Binary quadratic discriminants with a single class of forms in each gennus.Math. Zeit. 44 (1938), 85-90. 10.1007/BF01210641 |
| Reference:
|
[HBP] Al-Zaid Hassan B. Brindza, Á. Pintér: On positive integer solutions of the equation $xy + yz + xz = n$.Canad. Math. Bull. 39 (1996), 199-202. MR 1390355, 10.4153/CMB-1996-024-5 |
| Reference:
|
[Kov] K. Kovács: About some positive solutions of the diophantine equation $\sum_{1\leq i<j\leq n} a_ia_j = m$.Publ Math. Debrecen 40 (1992), 207-210. MR 1181363 |
| Reference:
|
[Lou] S. Louboutin: Minorations (sous ľhypothèse de Riemann généralisée) des nombres de classes des corps quadratiques imaginaires.Application, C. R. Acad. Sci. Paris 310 (1990), 795-800. MR 1058499 |
| Reference:
|
[Mor] L. J. Mordell: Diophantine equations.Chapter 30, Section 2 : The equation xy + yz + zx = d, Academic Press (1969). Zbl 0188.34503, MR 0249355 |
| Reference:
|
[Tat] T. Tatuzawa: On a theorem of Siegel.Japan J. Math. 21 (1951), 163-178. Zbl 0054.02302, MR 0051262 |
| . |