Previous |  Up |  Next

Article

Title: On Lucas pseudoprimes of the form $ax^2+bxy+cy^2$ in arithmetic progression $AX+B$ with a prescribed value of the Jacobi symbol (English)
Author: Rotkiewicz, A.
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 10
Issue: 1
Year: 2002
Pages: 103-109
.
Category: math
.
MSC: 11A07
MSC: 11A15
MSC: 11B39
idZBL: Zbl 1028.11008
idMR: MR1943029
.
Date available: 2009-01-30T09:09:47Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120575
.
Reference: [1] BACHMANN P.: Zahlentheorie. 2, Die analytische Zahlentheorie.Tenbner, Leipzig, 1894.
Reference: [2] Baillie R., Wagstaff, Jr. S.: Lucas pseudoprimes.Math. Comp. 35 (1980), 1391-1417. Zbl 0458.10003, MR 0583518, 10.1090/S0025-5718-1980-0583518-6
Reference: [3] Bilu Yu., Hanrot G., Vouter P. M.: Existence of primitive divisors of Lucas and Lehmer numbers.(with an appendix by Mignott M.), J. Reine Angew. Math. 539 (2001), 75-122. MR 1863855
Reference: [4] Crandall R., Pomerance C.: Prince Numbers.A Computational Perspective, Springer-Verlag, New York, 2001. MR 1821158
Reference: [5] Dickson L. E.: History of the Theory of Numbers, Vol. I.Chelsea Publishing Company, New York, 1952.
Reference: [6] Durst L. K.: Exceptional real Lehmer sequences.Pacific J. Math. 9 (1959), 437-441. Zbl 0091.04204, MR 0108465, 10.2140/pjm.1959.9.437
Reference: [7] Erdös P., Kiss P., Sárközy A.: Lower bound for the counting function.Math. Comp. 51 (1988), 315-323. MR 0942158
Reference: [8] Lehmer D. H.: An extended theory of Lucas functions.Ann. of Math. (2) 31 (1930), 419-448. MR 1502953, 10.2307/1968235
Reference: [9] Meyer A.: Ueber einen Satz von Dinchlet.J. reine angew. Math. 103 (1888), 98-117.
Reference: [10] Narkiewicz W.: The Development of Prime Number Theory: from Euclid to Hardy and Littlewood.Springer, 2000. Zbl 0942.11002, MR 1756780
Reference: [11] Rotkiewicz A.: On the pseudoprimes of the form ax + b with respect to the sequence of Lehmer.Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 20 (1972), 349-354. Zbl 0249.10012, MR 0309843
Reference: [12] Rotkiewicz A.: On Euler Lehmer pseudoprimes and strong Lehmer pseudoprimes with parameters L,Q in arithmetic progression.Math. Comp. 39 (1982), 239-247. MR 0658229
Reference: [13] Rotkoewicz A.: On strong pseudoprimes in the case of negative discriminant in arithmetic progressions.Acta Arith. 68 (1994), 145-151. MR 1305197
Reference: [14] Rotkiewicz A.: On Lucas pseudoprimes of the form $ax\sp 2+bxy+cy\sp 2$.Applications of Fibonacci Numbers, Volume 6, Edited by G.E. Bergum, A.N. Philippou and A.F. Horadam, Kluwer Academic Publishers, Dordrecht, 1996, 409-421. Zbl 0852.11006, MR 1393474
Reference: [15] Rotkiewicz A., A. Schinzel: Sur les nombres pseudopremiers de la forme $ax\sp 2+bxy+cy\sp 2$.C.R. Acad. Sci. Paris, 258 (1964), 3617-3620. MR 0161828
Reference: [16] Rotkiewicz A., Schinzel A.: On Lucas pseudoprimes with a prescribed value of the Jacobi symbol.Bull. Polish Acad. Sci. Math. 48 (2000), 77-80. Zbl 0951.11002, MR 1751157
Reference: [17] Schinzel A.: On primitive prime factors of $a^n - b^n$.Proc. Cambridge Philos. Soc. 58 (1962), 555-562. MR 0143728
Reference: [18] Schnitzel A.: The intrinsic divisors of Lehmer numbers in the case of negative discriminant.Ark. Math. 4 (1962), 413-416. MR 0139567, 10.1007/BF02591623
Reference: [19] Stewart C. L.: Primitive divisors of Lucas and Lehmer sequences.Transcendence Theory: Advances and Applications (A. Baker and D.W. Masser, eds.), Academic Press, New York, 1997, pp. 79-92. MR 0476628
Reference: [20] Ward M.: The intrinsic divisor of Lehmer numbers.Ann. of Math. (2) 62 (1955), 230-236. MR 0071446, 10.2307/1969677
.

Files

Files Size Format View
ActaOstrav_10-2002-1_11.pdf 633.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo