Previous |  Up |  Next

Article

Title: Ten problems on quadratic forms (English)
Author: Szymiczek, Kazimierz
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 10
Issue: 1
Year: 2002
Pages: 133-143
.
Category: math
.
MSC: 11E04
MSC: 11E12
MSC: 11E81
idZBL: Zbl 1080.11033
idMR: MR1943033
.
Date available: 2009-01-30T09:10:04Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120579
.
Reference: [1] P. E. Conner R. Perlis, and K. Szymiczek: Wild sets and 2-ranks of class groups.Acta Arith. 79 (1997), 83-91. MR 1438119
Reference: [2] A. Czogala: On reciprocity equivalence of quadratic number fields.Acta Arith. 58 (1991), 27-46. Zbl 0733.11012, MR 1111088
Reference: [3] A. Czogala: Witt rings of Hasse domains of global fields.J. Algebra 244 (2001), 604-630. Zbl 0984.11016, MR 1859041, 10.1006/jabr.2001.8918
Reference: [4] E. Hecke: Vorlesungen über die Theorie der algebraischen Zahlen.Akademische Verlagsgesellschaft, Leipzig 1923.
Reference: [5] S. Jakubec F. Marko, and K. Szymiczek: Parity of class numbers and Witt equivalence of quartic fields.Math. Comput. 64 (1995), 1711-1715. Corrigendum, ibid. 66 (1997), 927. MR 1308455, 10.1090/S0025-5718-1995-1308455-1
Reference: [6] K. Koziol: On a decomposition of the Witt group into direct sum of cyclic groups.Ann. Math. Siles. 6 (1992), 7-8. Zbl 0833.11014, MR 1217335
Reference: [7] R. Kučera, K. Szymiczek: Witt equivalence of cyclotomic fields.Math. Siovaca 42 (1992), 663-676. MR 1202180
Reference: [8] T. Y. Lam: The algebraic theory of quadratic forms.Second printing. Benjamin, Reading, Mass. 1980. Zbl 0437.10006, MR 0634798
Reference: [9] J. Milnor D. Husemoller: Symmetric Bilinear Forms.Springer Verlag, Berlin - Heidelberg - New York 1973. MR 0506372
Reference: [10] S. Nakano: On ideal class groups of algebraic number fields.J. Reine Angew. Math. 358 (1985), 61-75. Zbl 0559.12004, MR 0797674
Reference: [11] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers.Second ed. PWN and Springer-Verlag, Warszawa and Berlin Heidelberg New York 1990. Zbl 0717.11045, MR 1055830
Reference: [12] R. Parimala: Witt groups of conies, elliptic, and hyperelliptic curves.J. Number Theory 28 (1988), 69-93. MR 0925609, 10.1016/0022-314X(88)90120-5
Reference: [13] R. Perlis K. Szymiczek P. E. Conner, and R. Litherland: Matching Witts with global fields.Contemp. Math. 155 (1994), 365-387. MR 1260721, 10.1090/conm/155/01393
Reference: [14] A. Pfister: Quadratic lattices in function fields of genus 0.Proc. London Math. Soc. (3) 66 (1993), 257-278. Zbl 0808.11025, MR 1199066
Reference: [15] W. Scharlau: Quadratic and Hermitian Forms.Springer Verlag, Berlin-Heidelberg-New York - Tokyo, 1985. Zbl 0584.10010, MR 0770063
Reference: [16] K. Szymiczek: Quadratic forms over fields.Dissert. Math. 52 (1977), 1-63. Zbl 0371.12017, MR 0450199
Reference: [17] K. Szymiczek: Witt equivalence of global fields.Commun. Algebra 19 (4) (1991), 1125-1149. Zbl 0724.11020, MR 1102331, 10.1080/00927879108824194
Reference: [18] K. Szymiczek: 2-ranks of class groups of Witt equivalent number fields.Ann. Math. Siles. 12 (1998), 53-64. Zbl 0926.11083, MR 1673064
Reference: [19] K. Szymiczek: p-ranks of class groups of Witt equivalent number fields.J. Number Theory 78 (1999), 99-106. Zbl 0988.11054, MR 1706917, 10.1006/jnth.1999.2397
Reference: [20] K. Szymiczek: Conner's level condition.In: Algebraic Number Theory and Diophantine Analysis, Eds. Franz Halter-Koch, Robert F. Tichy. Walter de Gruyter, Berlin - New York 2000, 445-452. Zbl 0973.11096, MR 1770476
.

Files

Files Size Format View
ActaOstrav_10-2002-1_15.pdf 1.100Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo