Title:
|
$p$-adic variant of the convergence Khintchine theorem for curves over $\Bbb Z_p$ (English) |
Author:
|
Kovalevskaya, E. I. |
Language:
|
English |
Journal:
|
Acta Mathematica et Informatica Universitatis Ostraviensis |
ISSN:
|
1211-4774 |
Volume:
|
10 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
71-78 |
. |
Category:
|
math |
. |
MSC:
|
11J61 |
MSC:
|
11J83 |
idZBL:
|
Zbl 1069.11027 |
idMR:
|
MR1943025 |
. |
Date available:
|
2009-01-30T09:09:31Z |
Last updated:
|
2013-10-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/120587 |
. |
Reference:
|
[1] Khintchine A.: Einige Satze uber Kettenbruche mit Anwendungen auf die Theorie der Diophantischen Approximationen.Math. Ann. 92 (1924), 115-125. MR 1512207, 10.1007/BF01448437 |
Reference:
|
[2] Mahler K.: Über Transzendente p-adische Zahlen.Compozitio Mathematica. 2 (1935), 259-275. Zbl 0012.05302, MR 1556919 |
Reference:
|
[3] Adams W. W.: Transcendental numbers in the p-adic domain.Amer. J. Math. 88 (1966), 279-308. Zbl 0144.29301, MR 0197399, 10.2307/2373193 |
Reference:
|
[4] Mahler K.: p-adic numbers and their functions.Cambridge, 1981. Zbl 0444.12013, MR 0644483 |
Reference:
|
[5] Beresnevich V., Kovalevskaya E.: A full analogue of the Khintchine theorem for planar curves in $Z_p$.Preprint, Institute of Math. NAS Belarus. 2 (556) Minsk, 2000. |
Reference:
|
[6] Bernik V., Dodson M.: Metric Diophantine approximation on manifolds.Cambridge Tracts in Math. 137, Camb. Univ. Press, Cambridge, 1999. Zbl 0933.11040, MR 1727177 |
Reference:
|
[7] Melnichuk, Yu.: On the metric theory of the joint Diophantine approximation of p-adic numbers.Dokl. Akad. Nauk Ukrain. SSR, Ser. A.5 (1078), 394-397. |
Reference:
|
[8] Kovalevskaya E.: The convergence Khintchine theorem for polynomials and planar p-adic curves.Tatra Mt. Math. Publ. 20 (2000), 163-172. Zbl 0992.11043, MR 1845457 |
Reference:
|
[9] Silaeva N.: On analogue of Schmidt's theorem for curves in 3-dimensional p-adic spase.Vesti National Acad Sci. Belarus. Phys. and Math. Ser. 4 (2001), 35-41. |
Reference:
|
[10] Beresnevich V., Vasilyev D.: An analogue of the Khintchine theorem for curves in 3-dimensional complex space.Vesti National Acad Sci. Belarus. Phys. and Math. Ser. 1 (2001), 5-7. |
Reference:
|
[11] Bernik V., Kovalevskaya E.: Extremal property of some surfaces in n-dimensional Euclidean space.Mat. Zarnetki 15 N 2, 247-254. Zbl 0287.10045 |
. |