Previous |  Up |  Next

Article

Title: Non-monogenity of multiquadratic number fields (English)
Author: Nyul, Gábor
Language: English
Journal: Acta Mathematica et Informatica Universitatis Ostraviensis
ISSN: 1211-4774
Volume: 10
Issue: 1
Year: 2002
Pages: 85-93
.
Category: math
.
MSC: 11D57
MSC: 11R04
MSC: 11R21
idZBL: Zbl 1058.11023
idMR: MR1943027
.
Date available: 2009-01-30T09:09:39Z
Last updated: 2013-10-22
Stable URL: http://hdl.handle.net/10338.dmlcz/120589
.
Reference: [1] I. Gaál: Diophantine equations and power integral bases.Birkhauser Boston, 2002. MR 1896601
Reference: [2] I. Gaál A. Pethő, M. Pohst: On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case.J. Number Theory, 53 (1995), 100-114. MR 1344834, 10.1006/jnth.1995.1080
Reference: [3] M. N. Gras, F. Tanoe: Corps biquadratiques monogénes.Manuscripta Math., 86 (1995), 63-79. Zbl 0816.11058, MR 1314149, 10.1007/BF02567978
Reference: [4] T. Nakahara: On the indices and integral bases of non-cyclic but abelian biquadratic fields.Archiv. der Math., 41 (1983), 504-508. Zbl 0513.12005, MR 0731633, 10.1007/BF01198579
Reference: [5] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers.Second Edition, Springer Verlag, 1990. Zbl 0717.11045, MR 1055830
Reference: [6] G. Nyul: Power integral bases in totally complex biquadratic number fìelds.Acta Acad. Paed. Agriensis, Sectio Mathematicae, 28 (2001), 79-86. Zbl 0988.11011, MR 1875563
Reference: [7] B. Schmal: Diskriminanten, Z-Ganzheitsbasen und reiative Ganzheitsbasen bei multiquadratischen Zahlkörpern.Arch. Math., 52 (1989), 245-257. MR 0989879, 10.1007/BF01194387
Reference: [8] K. S. Williams: Integers of biquadratic fields.Canad. Math. Bull., 13 (1970), 519 526. Zbl 0205.35401, MR 0279069, 10.4153/CMB-1970-094-8
.

Files

Files Size Format View
ActaOstrav_10-2002-1_9.pdf 941.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo