Title:
|
Non-monogenity of multiquadratic number fields (English) |
Author:
|
Nyul, Gábor |
Language:
|
English |
Journal:
|
Acta Mathematica et Informatica Universitatis Ostraviensis |
ISSN:
|
1211-4774 |
Volume:
|
10 |
Issue:
|
1 |
Year:
|
2002 |
Pages:
|
85-93 |
. |
Category:
|
math |
. |
MSC:
|
11D57 |
MSC:
|
11R04 |
MSC:
|
11R21 |
idZBL:
|
Zbl 1058.11023 |
idMR:
|
MR1943027 |
. |
Date available:
|
2009-01-30T09:09:39Z |
Last updated:
|
2013-10-22 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/120589 |
. |
Reference:
|
[1] I. Gaál: Diophantine equations and power integral bases.Birkhauser Boston, 2002. MR 1896601 |
Reference:
|
[2] I. Gaál A. Pethő, M. Pohst: On the resolution of index form equations in biquadratic number fields, III. The bicyclic biquadratic case.J. Number Theory, 53 (1995), 100-114. MR 1344834, 10.1006/jnth.1995.1080 |
Reference:
|
[3] M. N. Gras, F. Tanoe: Corps biquadratiques monogénes.Manuscripta Math., 86 (1995), 63-79. Zbl 0816.11058, MR 1314149, 10.1007/BF02567978 |
Reference:
|
[4] T. Nakahara: On the indices and integral bases of non-cyclic but abelian biquadratic fields.Archiv. der Math., 41 (1983), 504-508. Zbl 0513.12005, MR 0731633, 10.1007/BF01198579 |
Reference:
|
[5] W. Narkiewicz: Elementary and Analytic Theory of Algebraic Numbers.Second Edition, Springer Verlag, 1990. Zbl 0717.11045, MR 1055830 |
Reference:
|
[6] G. Nyul: Power integral bases in totally complex biquadratic number fìelds.Acta Acad. Paed. Agriensis, Sectio Mathematicae, 28 (2001), 79-86. Zbl 0988.11011, MR 1875563 |
Reference:
|
[7] B. Schmal: Diskriminanten, Z-Ganzheitsbasen und reiative Ganzheitsbasen bei multiquadratischen Zahlkörpern.Arch. Math., 52 (1989), 245-257. MR 0989879, 10.1007/BF01194387 |
Reference:
|
[8] K. S. Williams: Integers of biquadratic fields.Canad. Math. Bull., 13 (1970), 519 526. Zbl 0205.35401, MR 0279069, 10.4153/CMB-1970-094-8 |
. |