Previous |  Up |  Next

Article

Title: Bilinear systems and chaos (English)
Author: Čelikovský, Sergej
Author: Vaněček, Antonín
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 4
Year: 1994
Pages: 403-424
.
Category: math
.
MSC: 34C11
MSC: 34H05
MSC: 37D45
MSC: 58F13
MSC: 93C10
MSC: 93C15
MSC: 93D15
idZBL: Zbl 0823.93026
idMR: MR1303292
.
Date available: 2009-09-24T18:48:57Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124162
.
Reference: [1] F. Alberting, E. D. Sontag: Some connections between chaotic dynamical systems and control systems.In: Proceedings of First European Control Conference, Grenoble, 1991, pp. 159-163.
Reference: [2] S. Čelikovský, A. Vaněček: Bilinear systems as the strongly nonlinear systems.In: Systems Structure and Control (V. Strejc, ed.), Pergamon Press, Oxford 1992, pp. 264-267.
Reference: [3] S. Čelikovský: On the stabilization of homogeneous bilinear systems.Systems and Control Lett. 21 (1993), 6. MR 1249929
Reference: [4] W. J. Freeman: Strange attractors that govern mammalian brain dynamics shown by trajectories of EEG potential.IEEE Trans. Circuits and Systems 35 (1988), 791-783. MR 0947807
Reference: [5] R. Genesio, A. Tesi: Chaos prediction in nonlinear feedback systems.IEE Proc. D 138 (1991), 313-320. Zbl 0754.93024
Reference: [6] R. Genesio, A. Tesi: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems.Automatica 28 (1992), 531-548. Zbl 0765.93030
Reference: [7] R. Genesio, A. Tesi: A harmonic balance approach for chaos prediction: the Chua's circuit.Internat. J. of Bifurcation and Chaos 2 (1992), 61-79. MR 1166315
Reference: [8] A. L. Goldberger: Nonlinear dynamics, fractals, cardiac physiology and sudden death.In: Temporal Disorder in Human Oscillatory Systems, Springer-Verlag, Berlin 1987. MR 0901320
Reference: [9] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields.Springer-Verlag, New York 1986. MR 1139515
Reference: [10] A. V. Holden (ed.): Chaos.Manchester Univ., Manchester 1986. Zbl 0743.58005
Reference: [11] H. Hyotyniemi: Postponing chaos using a robust stabilizer.In: Preprints of First IFAC Symp. Design Methods of Control Systems, Pergamon Press, Oxford 1991, pp. 568-572.
Reference: [12] L. O. Chua (ed.): Special Issue on Chaotic Systems.IEEE Proc. 6 (1987), 8, 75.
Reference: [13] E. N. Lorenz: Deterministic non-periodic flow.J. Atmospheric Sci. 20 (1965), 130-141.
Reference: [14] G. B. Di Massi, A. Gombani: On observability of chaotic systems: an example.Realization and Modelling in Systems Theory. In: Proc. International Symposium MTNS-89, Vol. II, Birkhäuser, Boston -- Basel -- Berlin 1990, pp. 489-496. MR 1115421
Reference: [15] R. R. Mohler: Bilinear Control Processes.Academic Press, New York 1973. Zbl 0343.93001, MR 0332249
Reference: [16] J. M. Ottino: The mixing of fluids.Scientific Amer. 1989, 56-67.
Reference: [17] C. T. Sparrow: The Lorenz Equations: Bifurcation, Chaos and Strange Attractors.Springer-Verlag, New York 1982. MR 0681294
Reference: [18] A. Vaněček: Strongly nonlinear and other control systems.Problems Control Inform. Theory 20 (1991), 3-12. MR 1102179
Reference: [19] A. Vaněček, S. Čelikovský: Chaos synthesis via root locus.IEEE Trans. Circuits and Systems 41 (1994), 1, 54-60.
Reference: [20] A. Vaněček, S. Čelikovský: Synthesis of chaotic systems.Kybernetika, accepted.
Reference: [21] S. Wiggins: Global Bifurcations and Chaos. Analytical Methods.Springer-Verlag, New York 1988. Zbl 0661.58001, MR 0956468
.

Files

Files Size Format View
Kybernetika_30-1994-4_4.pdf 1.532Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo