Title:
|
Bilinear systems and chaos (English) |
Author:
|
Čelikovský, Sergej |
Author:
|
Vaněček, Antonín |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
30 |
Issue:
|
4 |
Year:
|
1994 |
Pages:
|
403-424 |
. |
Category:
|
math |
. |
MSC:
|
34C11 |
MSC:
|
34H05 |
MSC:
|
37D45 |
MSC:
|
58F13 |
MSC:
|
93C10 |
MSC:
|
93C15 |
MSC:
|
93D15 |
idZBL:
|
Zbl 0823.93026 |
idMR:
|
MR1303292 |
. |
Date available:
|
2009-09-24T18:48:57Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/124162 |
. |
Reference:
|
[1] F. Alberting, E. D. Sontag: Some connections between chaotic dynamical systems and control systems.In: Proceedings of First European Control Conference, Grenoble, 1991, pp. 159-163. |
Reference:
|
[2] S. Čelikovský, A. Vaněček: Bilinear systems as the strongly nonlinear systems.In: Systems Structure and Control (V. Strejc, ed.), Pergamon Press, Oxford 1992, pp. 264-267. |
Reference:
|
[3] S. Čelikovský: On the stabilization of homogeneous bilinear systems.Systems and Control Lett. 21 (1993), 6. MR 1249929 |
Reference:
|
[4] W. J. Freeman: Strange attractors that govern mammalian brain dynamics shown by trajectories of EEG potential.IEEE Trans. Circuits and Systems 35 (1988), 791-783. MR 0947807 |
Reference:
|
[5] R. Genesio, A. Tesi: Chaos prediction in nonlinear feedback systems.IEE Proc. D 138 (1991), 313-320. Zbl 0754.93024 |
Reference:
|
[6] R. Genesio, A. Tesi: Harmonic balance methods for the analysis of chaotic dynamics in nonlinear systems.Automatica 28 (1992), 531-548. Zbl 0765.93030 |
Reference:
|
[7] R. Genesio, A. Tesi: A harmonic balance approach for chaos prediction: the Chua's circuit.Internat. J. of Bifurcation and Chaos 2 (1992), 61-79. MR 1166315 |
Reference:
|
[8] A. L. Goldberger: Nonlinear dynamics, fractals, cardiac physiology and sudden death.In: Temporal Disorder in Human Oscillatory Systems, Springer-Verlag, Berlin 1987. MR 0901320 |
Reference:
|
[9] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields.Springer-Verlag, New York 1986. MR 1139515 |
Reference:
|
[10] A. V. Holden (ed.): Chaos.Manchester Univ., Manchester 1986. Zbl 0743.58005 |
Reference:
|
[11] H. Hyotyniemi: Postponing chaos using a robust stabilizer.In: Preprints of First IFAC Symp. Design Methods of Control Systems, Pergamon Press, Oxford 1991, pp. 568-572. |
Reference:
|
[12] L. O. Chua (ed.): Special Issue on Chaotic Systems.IEEE Proc. 6 (1987), 8, 75. |
Reference:
|
[13] E. N. Lorenz: Deterministic non-periodic flow.J. Atmospheric Sci. 20 (1965), 130-141. |
Reference:
|
[14] G. B. Di Massi, A. Gombani: On observability of chaotic systems: an example.Realization and Modelling in Systems Theory. In: Proc. International Symposium MTNS-89, Vol. II, Birkhäuser, Boston -- Basel -- Berlin 1990, pp. 489-496. MR 1115421 |
Reference:
|
[15] R. R. Mohler: Bilinear Control Processes.Academic Press, New York 1973. Zbl 0343.93001, MR 0332249 |
Reference:
|
[16] J. M. Ottino: The mixing of fluids.Scientific Amer. 1989, 56-67. |
Reference:
|
[17] C. T. Sparrow: The Lorenz Equations: Bifurcation, Chaos and Strange Attractors.Springer-Verlag, New York 1982. MR 0681294 |
Reference:
|
[18] A. Vaněček: Strongly nonlinear and other control systems.Problems Control Inform. Theory 20 (1991), 3-12. MR 1102179 |
Reference:
|
[19] A. Vaněček, S. Čelikovský: Chaos synthesis via root locus.IEEE Trans. Circuits and Systems 41 (1994), 1, 54-60. |
Reference:
|
[20] A. Vaněček, S. Čelikovský: Synthesis of chaotic systems.Kybernetika, accepted. |
Reference:
|
[21] S. Wiggins: Global Bifurcations and Chaos. Analytical Methods.Springer-Verlag, New York 1988. Zbl 0661.58001, MR 0956468 |
. |