Previous |  Up |  Next

Article

Title: Generalized Jensen difference based on entropy functions (English)
Author: Sahoo, Prasanna K.
Author: Wong, A. K. C.
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 24
Issue: 4
Year: 1988
Pages: 241-250
.
Category: math
.
MSC: 62B10
MSC: 68T10
MSC: 94A17
idZBL: Zbl 0667.62003
idMR: MR961558
.
Date available: 2009-09-24T18:06:43Z
Last updated: 2012-06-05
Stable URL: http://hdl.handle.net/10338.dmlcz/124415
.
Reference: [1] S. Arimoto: Information theoretic considerations of estimations problems.Inform. and Control 19 (1971), 181-194. MR 0309224
Reference: [2] M. Behara, J. S. Chawla: Generalized $\gamma$-entropy.Entropy and ergodic theory, pp. 15-38. Selecta Statistica Canadiana, Vol. 2, Univ. Press Canada, Toronto, Ontario 1975. Zbl 0358.94028, MR 0389399
Reference: [3] M. Ben-Bassat: $f$-Entropies, probability of error, and feature selection.Inform. and Control 39 (1978), 227-242. Zbl 0394.94011, MR 0523439
Reference: [4] J. Burbea, C. R. Rao: On the convexity of some divergence measures based on entropy functions.IEEE Trans. Inform. Theory IT-28 (1982), 489-495. Zbl 0479.94009, MR 0672884
Reference: [5] J. Burbea, C. R. Rao: On the convexity of higher order Jensen differences based on entropy functions.IEEE Trans. Inform. Theory IT-28 (1982), 961-963. Zbl 0497.94002, MR 0687297
Reference: [6] R. Chakraborty: A note on Nei's measure of gene diversity in a substructured population.Humangenetik 21 (1974), 85-88.
Reference: [7] Z. Daróczy: Generalized information functions.Inform. and Control 16 (1970), 36-51. MR 0272528
Reference: [8] A. El-Sayed: A generalized entropy form of the Fano inequality.Utilitas Math. 12 (1977), 289-298. Zbl 0386.94005, MR 0479673
Reference: [9] R. G. Gallager: Information Theory and Reliable Communication.Wiley, New York 1968. Zbl 0198.52201
Reference: [10] J. Havrda, F. Charvát: Quantification method of classification process, concept of structural $\alpha$-entropy.Kybernetika 3 (1967), 30-35. MR 0209067
Reference: [11] N. Jardine, R. Sibson: Mathematical Taxonomy.Wiley, New York 1971. Zbl 0322.62065, MR 0441395
Reference: [12] L. Kanal: Patterns in pattern recognition: 1968--1974.IEEE Trans. Inform. Theory IT-20 (1974), 697-722. Zbl 0286.68055, MR 0356609
Reference: [13] R. C. Lewotin: The apportionment of human diversity.Evolutionary Biology 6 (1972), 381-398.
Reference: [14] T. K. Nayak: On diversity measures based on entropy functions.Comm. Statist. A 14 (1985), 203-215. Zbl 0561.62004, MR 0788794
Reference: [15] T. K. Nayak: Sampling distributions in analysis of diversity.Sankhya Ser. B 48 (1986), 1-9. Zbl 0656.62024, MR 0887681
Reference: [16] M. Nei: Analysis of gene diversity in subdivided populations.Proc. Nat. Acad. Sci. 70 (1973), 3321-3323. Zbl 0272.92013
Reference: [17] C. R. Rao: Diversity and dissimilarity coefficients: A unified approach.J. Theor. Pop. Biol. 27 (1982), 24-43. Zbl 0516.92021, MR 0662520
Reference: [18] C. R. Rao: Convexity properties of entropy function and analysis of diversity.In: Inequalities in Statistics and Probability (Y. L. Tong, ed.). IMS Lecture Notes, 1984, Vol. 5, pp. 68-77. MR 0789236
Reference: [19] A. Rényi: On measures of entropy and information.In: Proc. Fourth Berkeley Symp. 1960, Vol. 1, Univ. of California Press, Berkeley--Los Angeles 1961, pp. 547-561. MR 0132570
Reference: [20] P. K. Sahoo: On the monotonicity of generalized gamma entropy.Submitted to Bull. Inst. Math. Acad. Sinica (1985).
Reference: [21] P. K. Sahoo: On a generalization of Shannon's random cipher result.Kybernetika 22 (1986), 385-392. Zbl 0618.94007, MR 0871601
Reference: [22] C. E. Shannon: Mathematical theory of communication.Bell Systems Tech. J. 27 (1948), 379-423. Zbl 1154.94303, MR 0026286
Reference: [23] R. Sibson: Information radius.Z. Wahrsch. Verw. Gebiete 14 (1969), 149-160. Zbl 0186.53301, MR 0258198
Reference: [24] I. Vajda: Bounds of the minimal error probability on checking a finite or countable number of hypotheses.Problems Inform. Transmissions 4 (1968), 6-14. MR 0267685
Reference: [25] A. K. C. Wong, M. L. You: Distance and entropy measure of random graph with application to structural pattern recognition.IEEE Trans. Pattern Anal. Mach. Intell. PAMI-7 (1985), 599-609.
.

Files

Files Size Format View
Kybernetika_24-1988-4_1.pdf 466.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo