Title:
|
A pencil approach to high gain feedback and generalized state space systems (English) |
Author:
|
Hinrichsen, Diederich |
Author:
|
O'Halloran, Joyce |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 |
Volume:
|
31 |
Issue:
|
2 |
Year:
|
1995 |
Pages:
|
109-139 |
. |
Category:
|
math |
. |
MSC:
|
15A22 |
MSC:
|
93B10 |
MSC:
|
93B25 |
MSC:
|
93B52 |
MSC:
|
93C05 |
idZBL:
|
Zbl 0862.93033 |
idMR:
|
MR1334505 |
. |
Date available:
|
2009-09-24T18:54:00Z |
Last updated:
|
2012-06-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/124423 |
. |
Reference:
|
[1] P. Brunovský: A classification of linear controllable systems.Kybernetika 3 (1970), 173-187. MR 0284247 |
Reference:
|
[2] J. D. Cobb: Controllability, observability, and duality in singular systems.IEEE Trans. Automat. Control AC-29 (1984), 1076-1082. MR 0771396 |
Reference:
|
[3] C. DeConcini D. Eisenbud, C. Procesi: Young diagrams and determinantal varieties.Invent. Math. 56(1980), 129-165. MR 0558865 |
Reference:
|
[4] E. R. Gantmacher: The Theory of Matrices. Volume 1 and 2.Chelsea, New York 1959. |
Reference:
|
[5] H. Gliising-Luerlien: A feedback canonical form for singular systems.Internat. J. Control 52 (1990), 347-376. MR 1061724 |
Reference:
|
[6] H. Gliising-LuerBen: Gruppenaktionen in der Theorie singularer Systeme.Ph.D. Thesis, Institut fur Dynamische Systeme, Universitat Bremen, 1991. |
Reference:
|
[7] D. Hinrichsen, J. O'Halloran: A complete characterization of orbit closures of controllable singular systems under restricted system equivalence.SIAM J. Control Optim. 25 (1990), 602-623. Zbl 0701.93017, MR 1047426 |
Reference:
|
[8] D. Hinrichsen, J. O'Halloran: The orbit closure problem for matrix pencils: Necessary conditions and an application to high gain feedback.In: New Trends in Systems Theory, Birkhauser 1991, pp. 388-392. Zbl 0736.93032, MR 1125128 |
Reference:
|
[9] D. Hinrichsen, J. O'Halloran: Orbit closures of matrix pencils and system limits under high gain feedback.In: Proc. 29th IEEE Conference on Decision and Control, Honolulu 1990, pp. 55-60. |
Reference:
|
[10] D. Hinrichsen, J. O'Halloran: A note on the degeneration of systems under pencil equivalence.In: Proc. 30th IEEE Conference on Decision and Control, Brighton 1991, pp. 1431-1432. |
Reference:
|
[11] D. Hinrichsen, J. O'Halloran: Orbit closure of singular matrix pencils.J. Pure Appl. Algebra 81 (1992), 117-137. |
Reference:
|
[12] D. Hinrichsen, J. O'Halloran: A note on the orbit closure problem for the generalized feedback group.In: Systems and Networks: Mathematical Theory and Applications, Vol. II - Invited and Contributed Papers, Akademie-Verlag, Berlin 1994, pp. 221-224. Zbl 0925.93401 |
Reference:
|
[13] R. E. Kalman: Kronecker invariants and feedback.In: Ordinary Differential Equations, Proc. Conf. Ordinary Differential Equations (Weiss, ed.), Washington 1971. MR 0421751 |
Reference:
|
[14] L. Kronecker: Algebraische Reduktion der Schaaren bilinearer Formen.S.-B. Akad. (1890), pp. 763-776. |
Reference:
|
[15] V. Kučera, P. Zagalak: Fundamental theorem of state feedback for singular systems.Automatica 24 (1988), 653-658. MR 0966689 |
Reference:
|
[16] F. L. Lewis, K. Ozcaldiran: Reachability and controllability for descriptor systems.In: Proceedings of the 27th Midwestern Symposium on Circuits and Systems, Morgantown, West Virginia 1984, pp. 690-695. |
Reference:
|
[17] J. J. Loiseau K. Ozcaldiran M. Malabre, N. Karcanias: Feedback canonical forms of singular systems.Kybernetika 27 (1991), 289-305. MR 1127906 |
Reference:
|
[18] J. O'Halloran: Feedback equivalence of constant linear systems.Systems Control Lett. 5 (1987), 241-246. Zbl 0628.93007, MR 0877091 |
Reference:
|
[19] K. Ozcaldiran, F. L. Lewis: On the regularizability of singular systems.IEEE Trans. Automat. Control 50 (1990), 1156-1160. MR 1073262 |
Reference:
|
[20] A. C. Pugh G. E. Hay ton, P. Fretwell: Transformation of matrix pencils and implications in linear systems theory.Internat. J. Control 45 (1987), 529-548. MR 0875557 |
Reference:
|
[21] H. H. Rosenbrock: State Space and Multivariable Theory.Nelson-Wiley, New York 1970. Zbl 0246.93010, MR 0325201 |
Reference:
|
[22] H. H. Rosenbrock: Structural properties of linear dynamical systems.Internat. J. Control 20 (1974), 177-189. Zbl 0285.93019, MR 0424303 |
Reference:
|
[23] G.C. Verghese B. C. Levy, T. Kailath: A generalized state-space for singular systems.IEEE Trans. Automat. Control AC-26 (1981), 811-830. MR 0635842 |
Reference:
|
[24] K. Weierstrass: Zur Theorie der bilinearen und quadratischen Formen.Monatsh. Akad. Wiss. (1867), 310-338. |
Reference:
|
[25] J. C. Willems: Paradigms and puzzles in the theory of dynamical systems.IEEE Trans. Automat. Control 56 (1991), 259-294. Zbl 0737.93004, MR 1092818 |
Reference:
|
[26] W. M. Wonham: Linear Multivariable Control: A Geometric Approach.Second edition. Springer-Verlag, Heidelberg 1979. Zbl 0424.93001, MR 0569358 |
Reference:
|
[27] E. L. Yip, R. F. Sincovic: Solvability, controllability, and observability of continuous descriptor systems.IEEE Trans. Automat. Control AC-26 (1981), 702-707. MR 0630799 |
Reference:
|
[28] K. D. Young P. V. Kokotovic, and V.I. Utkin: A singular perturbation analysis of high-gain feedback systems.IEEE Trans. Automat. Control AC-22 (1977), 931-937. MR 0476055 |
. |