Previous |  Up |  Next

Article

Title: Topological equivalence and topological linearization of controlled dynamical systems (English)
Author: Čelikovský, Sergej
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 31
Issue: 2
Year: 1995
Pages: 141-150
.
Category: math
.
MSC: 34C20
MSC: 34H05
MSC: 93B17
MSC: 93B18
MSC: 93D15
idZBL: Zbl 0863.93013
idMR: MR1334506
.
Date available: 2009-09-24T18:54:07Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124427
.
Reference: [1] D. Aeyels: Local and global controllability for nonlinear systems.Systems Control Lett. 5 (1984), 19-26. Zbl 0552.93009, MR 0768710
Reference: [2] D. Aeyels: Stabilization of a class of nonlinear systems by a smooth feedback control.Systems Control Lett. 5 (1985), 289-294. Zbl 0569.93056, MR 0791542
Reference: [3] R. W. Brockett: Feedback invariants for nonlinear systems.In: Proc. of the Vllth IFAC World Congress, Helsinki 1978, pp. 1115-1120.
Reference: [4] S. Čelikovský: On the representation of trajectories of bilinear systems and its applications.Kybernetika 23 (1987), 3, 198-213. MR 0900330
Reference: [5] S. Čelikovský: On the continuous dependence of trajectories of bilinear systems and its applications.Kybernetika 24 (1988), 4, 278-292. MR 0961561
Reference: [6] S. Čelikovský: On the Lipschitzean dependence of trajectories of multi-input time dependent bilinear systems on controls.Problems Control Inform. Theory 17(1988), 4, 231-238. MR 0958030
Reference: [7] S. Čelikovský: Topological Hnearization of nonlinear systems: Application to the non-smooth stabilization.In: Proc. of the 2nd ECC'93, Groningen 1993, pp. 41 44.
Reference: [8] S. Čelikovský: Global linearization of nonlinear systems: A survey.In: Geometry in Nonhnear and Differential Inclusions (Banach Center Publications, Vol. 32), Polish Academy of Sciences, Warszawa 1995. MR 1364424
Reference: [9] S. Čelikovský: Numerical algorithm for the nonsmooth stabilization based on topological Hnearization.In: Optimization-Based Computer-Aided Modelling and Design (J. Doležal and J. Fidler, eds.), ÚTIA AV ČR, Prague 1995.
Reference: [10] D. Claude: Everything you always wanted to know about linearization but were afraid to ask.In: Proc. of the Conf. Algebraic and Geometric Methods in Nonlinear Control Theory, Paris 1985 (M. Fliess and M. Hazewinkel, eds.), Reidel, Dordrecht 1986. MR 0862326
Reference: [11] W. Dayawansa W. M. Boothby, D. L. Elliot: Global state and feedback equivalence of nonlinear systems.Systems Control Lett. 6 (1985), 229-234. MR 0812254
Reference: [12] M. Fliess, F. Messager: Vers une stabilisation non lineaire discontinue.In: Analysis and Optimization of Systems (A. Bensoussan and J. L. Lions, eds.), (Lecture Notes in Control Inform. Science 144), Springer-Veilag, New York 1990, pp. 778-787. Zbl 0716.93046
Reference: [13] J. Guckenheimer, P. Holmes: Nonlinear Oscillations, Dynamical systems and Bifurcations of Vector Fields.Springer-Verlag, New York 1986. MR 1139515
Reference: [14] R. E. Kalman P. L. Falb, M. A. Arbib: Topics in Mathematical Systems Theory.McGraw-Hill, New York 1969. MR 0255260
Reference: [15] M. Kawski: Stabilization of nonlinear systems in the plane.Systems Control Lett. 12 (1989), 169-175. Zbl 0666.93103, MR 0985567
Reference: [16] R. R. Kadiyala: A tool box for approximate linearization of nonlinear systems.IEEE Control Systems Magazine, April 1993, 47-57.
Reference: [17] W. Respondek: Geometiic methods in linearization of control systems.In: Mathematical Control Theoty, Banach Centei Publications 14 (1985), 453-467. MR 0851243
Reference: [18] J. C. Willems: Paradigms and puzzles in the theory of dynamical systems.IEEE Trans. Automat. Control 56 (1991), 259-294. Zbl 0737.93004, MR 1092818
Reference: [19] L. A. Zadeh, C. A. Desoer: Linear Systems Theory.McGraw-Hill, New Yoik 1963.
.

Files

Files Size Format View
Kybernetika_31-1995-2_2.pdf 764.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo