Previous |  Up |  Next


[1] D. F. Andrews, al.: Robust Estimates of Location: Survey and Advances. Princeton University Press, Princeton 1972. MR 0331595 | Zbl 0254.62001
[2] K. Campbel: Recursive computation of M-estimates for the parameters of a finite autoregressive process. Ann. Statist. 10 (1982), 442-453. MR 0653519
[3] T. Cipra: Note on approximate non-Gaussian filtering with nonlinear observation relation. Comment. Math. Univ. Carolinae 31 (1990), 601-605. MR 1078492 | Zbl 0713.60053
[4] T. Cipra, J. Uanousek: Robust Filtering and Estimation in Autoregressive Models. (in Czech). Research Report, Institute of Hygiene and Epidemiology, Prague 1989.
[5] T. Cipra, R. Romera: Robust Kalman filter and its application in tune series analysis. Kybernetika 27 (1991), 481-494, MR 1150938
[6] T. Cipra, R. Romera: Recursive time series methods in L1-norm. In: L1-Statistical Analysis and Related Methods (Y. Dodge, ed.), North Holland, Amsterdam 1992, pp. 233-243. MR 1214835
[7] T. Cipra, A. Rubio: Kalman filter with a non-linear non-Gaussian observation relation. Trabajos de Estadi'stica 6(1991), 111-119. Zbl 0748.62052
[8] L. Denby, R. D. Martin: Robust estimation of the first-order autoregressive parameter. J. Amer. Statist. Assoc. 74 (1979), 140-146. Zbl 0407.62066
[9] L. Fahrmeier: Rekursive Algorithmen fur Zeitreihenmodelle. Vandenhoeck und Ruprecht, Gottingen 1981. MR 0615738
[10] S. Hillmer: Monitoring and adjusting forecasts in the presence of additive outliers. J. Forecasting 3 (1984), 205-215.
[11] P. J. Huber: Robust Statistics. J. Wiley, New York 1981. MR 0606374 | Zbl 0536.62025
[12] A. Jazwinski: Stochastic Processes and Filtering Theory. Academic Press, New York 1970. Zbl 0203.50101
[13] B. Kleiner R. D. Martin, D. J. Thomson: Robust estimation of power spectra. J. Roy. Statist. Soc. Ser. B 41 (1979), 313-351. MR 0557596
[14] J. Ledolter: The effect of additive outliers on the forecasts from ARIMA models. Internat. J. Forecasting 5 (1989), 1-10.
[15] L. Ljung, T. Soderstrom: Theory and Practice of Recursive Identification. MIT Press, Cambridge, Massachusetts 1983. MR 0719192
[16] R. D. Martin: Robust estimation for time series autoregressions. In: Robustness in Statistics (R. L. Launer and G.N. Wilkinson, eds.), Academic Press, New York 1979, pp. 147-176.
[17] R. D. Martin: Approximate conditional-mean type smoothers and interpolators. In: Smoothing Techniques for Curve Estimation (T. Gasser and M. Rosenblatt, eds.), Springer, New York 1979, pp. 117-143. MR 0564255 | Zbl 0423.62073
[18] R. D. Martin: Robust estimation of autoregressive models. In: Directions in Time Series (D. R. Brillinger and G. C. Tiao, eds.), Inst. Math. Statist. Publications, Hayward, CA 1980, pp. 228-254. MR 0624655 | Zbl 0531.62038
[19] R. D. Martin: Robust methods for time series. In: Applied Time Series II (D. F. Findley, ed.), Academic Press, New York 1981, pp. 683-759. MR 0651950 | Zbl 0482.62079
[20] R. D. Martin, D. J. Thomson: Robust-resistant spectrum estimation. Proc. IEEE 70 (1982), 1097-1114.
[21] D. C. Montgomery, L. A. Johnson: Forecasting and Time Series Analysis. McGraw-Hill, New York 1976. Zbl 0411.62067
[22] K. Sejling H. Madsen J. Hoist U. Hoist, J.-E. England: A method for recursive robust estimation of AR-parameters. Preprint, Technical University Lyngby, Denmark and University of Lund, Sweden 1990.
[23] N. Stockinger, R. Dutter: Robust Time Series and Analysis: A Survey. Supplement to Kybernetika 23 (1987). MR 0921397
Partner of
EuDML logo