Previous |  Up |  Next

Article

References:
[1] S. Ikeda: Continuity and characterization of Shannon-Wiener information measure for continuous probability distributions. Ann. Inst. Statist. Math. 11 (1959), 131-144. MR 0114682 | Zbl 0125.09301
[2] M. Janžura T. Koski, A. Otáhal: Minimum entropy of error principle in estimation. Inform. Sci., to appear.
[3] M. Janžura T. Koski, A. Otáhal: Minimum entropy of error principle in estimation: a short survey. In: Proceedings of 6th Joint Swedish-Russian Internat. Workshop on Inform. Theory, Moelle 1993, pp. 429-431.
[4] A. Otáhal: Finiteness and Continuity of Differential Entropy. Asymptotic Statistics. In: Procee lings of 5th Prague Symposium on Asymptotic Statistics (P. Mandl and M. Huskova, eds.), Physica-Verlag, Heidelberg 1993, pp. 415-419. MR 1311960
[5] I. Vajda: Theory of Statistical Inference and Information. Kluwer, Dodrecht-Boston-London 1989. Zbl 0711.62002
[6] H. L. Weidemann, E. B. Stear: Entropy analysis of parameter estimation. Inform, and Control 14 (1969), 493-506. MR 0246699 | Zbl 0212.23301
[7] H. L. Weidemann, E. B. Stear: Entropy analysis of estimation systems. IEEE Trans. Inform. Theory 16 (1970), 264-270. MR 0272531
Partner of
EuDML logo