Previous |  Up |  Next

Article

Title: Decomposition in stereological unfolding problems (English)
Author: Beneš, Viktor
Author: Krejčíř, Pavel
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 33
Issue: 3
Year: 1997
Pages: 245-258
.
Category: math
.
MSC: 60D05
MSC: 60K35
idZBL: Zbl 0912.60025
idMR: MR1463607
.
Date available: 2009-09-24T19:08:53Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124711
.
Reference: [1] A. Baddeley, L. M. Cruz-Orive: The Rao-Blackwell theorem in stereology and some counterexamples.Adv. in Appl. Probab. 27 (1995), 2-19. Zbl 0818.60010, MR 1315573
Reference: [2] V. Beneš A. M. Gokhale, M. Slámova: Unfolding the bivariate size-orientation distribution.Acta Stereol. 15, (1996), 1, 9-14.
Reference: [3] R. Coleman: Inverse problems.J. Microsc. 153 (1989), 3, 233-248.
Reference: [4] L. M. Cruz-Orive: Particle size-shape distributions: The general spheroid problem, I., II.J. Microsc. 107 (1976), 3, 235-253, 112 (1978), 153-167.
Reference: [5] W. Gerlach, J. Ohser: On the accurancy of numerical solutions for some stereological problems as the Wicksell corpuscule problem.J. Biomath. 28 (1986), 7, 881-887. MR 0872774
Reference: [6] A. M. Gokhale: Estimation of bivariate size and orientation distribution of microcracks.Acta Metall. and Mater. 44 (1996), 2, 475-485.
Reference: [7] I. S. Gradshtejn, I. M. Ryzhik: Tables of Integrals, Sums, Series and Products.GIFML Moscow 1963. (In Russian.)
Reference: [8] L. M. Karlsson, L. M. Cruz-Orive: The new stereological tools in metallography: estimation of pore size and number in aluminium.J. Microscopy 165 (1992), 3, 391-415.
Reference: [9] A. Kleinwachter, M. Zähle: Size distribution stereology for quasiellipsoids in $R^n$.Math. Oper. Stat. 17 (1986), 332-335. MR 0849742
Reference: [10] P. Mikusinski H. Sherwood, M. D. Taylor: Probabilistic interpretations of copulas and their convex sums.In: Advances in Probability Distributions with Given Marginals (Dall'Aglio et al, eds.), Kluwer Acad. Publ., Dordrecht 1991, pp. 95-112. MR 1215947
Reference: [11] J. Møller: Stereological analysis of particles of varying ellipsoidal shape.J. Appl. Probab. 25 (1988), 322-335. MR 0938196
Reference: [12] J. Ohser, F. Mücklich: Stereology for some classes of polyhedrons.Adv. in Appl. Probab. 27 (1995), 2, 384-96. MR 1334820
Reference: [13] B. W. Silvermann M. C. Jones D. W. Nychka, J. D. Wilson: A smoothed EM approach to indirect estimation problems, with particular reference to stereology and emission tomography.J. Roy. Statist. Soc. Ser. B 52 (1990), 271-324. MR 1064419
Reference: [14] C. van Putten, J. H. van Schuppen: Invariance properties of the conditional independence relation.Ann. Probab. 13 (1985), 3, 934-945. Zbl 0576.60002, MR 0799429
Reference: [15] S. D. Wicksell: The corpuscule problem. A mathematical study of a biometrical problem.Biometrika 17 (1925), 84-88.
.

Files

Files Size Format View
Kybernetika_33-1997-3_1.pdf 1.623Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo