Previous |  Up |  Next

Article

Title: On the relation between gnostical and probability theories (English)
Author: Fabián, Zdeněk
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 33
Issue: 3
Year: 1997
Pages: 259-270
.
Category: math
.
MSC: 62A01
MSC: 62A99
MSC: 62B10
MSC: 62F99
idZBL: Zbl 0997.62508
idMR: MR1463608
.
Date available: 2009-09-24T19:09:00Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124715
.
Reference: [1] S. Amari: Differential--Geometrical Methods in Statistics.(Lecture Notes in Statistics 28.) Springer-Verlag, Berlin--Heidelberg--New York 1985. Zbl 0559.62001, MR 0788689
Reference: [2] T. M. Cover, J. A. Thomas: Elements of Information Theory.Wiley, New York--London 1991. Zbl 0762.94001, MR 1122806
Reference: [3] Z. Fabián: Point estimation in case of small data sets.In: Trans. 10th Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, Academia, Prague 1988, pp. 305-312. MR 1136285
Reference: [4] Z. Fabián: Generalized score function and its use.In: Trans. 12th Prague Conf. on Inform. Theory, Statist. Dec. Functions, Random Processes, ÚTIA AV ČR, Prague 1994.
Reference: [5] Z. Fabián: Information and entropy of continuous random variables.IEEE Trans. Inform. Theory 43 (1997), 3. MR 1454240
Reference: [6] Z. Fabián: Geometric Moments.Techn. Report No. V-699, ICS AS CR, Prague 1996.
Reference: [7] Z. Fabián: Geometric moments.In: Trans. ROBUST'96, JČMF, Prague 1997. (In Czech.)
Reference: [8] F. R. Hampel P. J. Rousseeuw E. M. Ronchetti, W. A. Stahel: Robust Statistic. The Approach Based on Influence Functions.Wiley, New York 1987. MR 0829458
Reference: [9] S. Kobayashi, K. Nomizu: Foundations of Differential Geometry.Interscience Publishers, New York--London 1963. Zbl 0119.37502, MR 0152974
Reference: [10] P. Kovanic: Gnostical theory of individual data.Problems Control Inform. Theory 13 (1984), 4, 259-274. Zbl 0575.94005, MR 0776018
Reference: [11] P. Kovanic: Gnostical theory of small samples of real data.Problems Control Inform. Theory 13 (1984), 5, 303-319. Zbl 0583.94008, MR 0776021
Reference: [12] P. Kovanic: On relation between information and physics.Problems Control Inform. Theory 13 (1984), 6, 383-399.
Reference: [13] P. Kovanic: A new theoretical and algorithmical tool for estimation, identification and control.Automatica 22 (1986), 6, 657-674.
Reference: [14] P. Kovanic, J. Novovičová: Comparizon of statistical and gnostical estimates of parameter of location on real data.In: Proc. of ROBUST, JČMF, Prague 1986. (In Czech.)
Reference: [15] J. Novovičová: M-estimators and gnostical estimators of location.Problems Control Inform. Theory 18 (1989), 6, 397-407. MR 1029471
Reference: [16] G. P. Patil M. T. Boswell, M. V. Ratnaparkhi: Dictionary and classified bibliography of statistical distributions in scientific work.In: Internat. Co-operative Publ. House, Maryland 1984.
Reference: [17] A. P. Prudnikov J. A. Brychkov, O. I. Marichev: Integrals and Series.Nauka, Moskva 1981. (In Russian.) MR 0635931
Reference: [18] S. M. Stiegler: Do robust estimators work with real data?.Ann. Statist. 6 (1977), 1055-1098. MR 0455205
Reference: [19] I. Vajda: Efficiency and robustness control via distorted maximum likelihood estimation.Kybernetika 22 (1986), 1, 47-67. Zbl 0603.62039, MR 0839344
Reference: [20] I. Vajda: Minimum-distance and gnostical estimators.Problems Control Inform. Theory 17 (1987), 5, 253-266. MR 0967946
Reference: [21] I. Vajda: Comparison of asymptotic variances for several estimators of location.Problems Control Inform. Theory 18 (1989), 2, 79-87. Zbl 0678.62035, MR 0991547
.

Files

Files Size Format View
Kybernetika_33-1997-3_2.pdf 655.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo