Previous |  Up |  Next

Article

Title: Optimal control of a linear discrete system (English)
Author: Štecha, Jan
Author: Kozáčiková, Alena
Author: Kozáčik, Jaroslav
Author: Lidický, Jiří
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 9
Issue: 5
Year: 1973
Pages: (374)-388
.
Category: math
.
MSC: 49L99
MSC: 93C05
MSC: 93C55
MSC: 93E10
idZBL: Zbl 0288.49019
idMR: MR0325213
.
Date available: 2009-09-24T16:35:13Z
Last updated: 2012-06-04
Stable URL: http://hdl.handle.net/10338.dmlcz/124740
.
Reference: [1] Athans M., Falb L. P.: Optimal control.McGraw Hill, N. York 1966. Zbl 0196.46303
Reference: [2] Kalman R. E., Falb P. L., Arbib M. A.: Topics in mathematical system theory.McGraw Hill, N. York 1969. Zbl 0231.49001, MR 0255260
Reference: [3] Desoer Ch. A., Zadeh L. A.: Linear system theory.McGraw Hill, N. York 1963. Zbl 1145.93303
Reference: [4] Athans M., Levine W.: On the design of linear system using only output variable feedback.In: Proc. 6th Allerton Conf. Circuit and system theory 1969, 661-670. MR 0263496
Reference: [5] Athans M., Johnson T.: On the determination of the optimal constrained dynamic compensator for linear constant system.IEEE Tran. on Automatic Control AC-15 (1970), 6, 658-660.
Reference: [6] Mitter S. K., Foulkes R.: Controllability and pole assigment for discrete time linear systems defined over arbitrary fields.SIAM Journal of control 9 (1971), 1, 1-8. MR 0290826
Reference: [7] Tse Edison: Optimal minimal order observer estimators for discrete linear time varying systems.IEEE Tran. on Automatic Control AC-15 (1970), 4, 416-426. MR 0287934
Reference: [8] Dorato P., Levis A. H.: Optimal linear regulator: The discrete time case.IEEE Tran. on Automatic Control AC-16 (1971), 6, 613-620. MR 0317816
Reference: [9] Kozáčiková A.: Algorithms for solution of linear discrete systems with incomplete information about the state of the system.Thesis, ČVUT, Praha 1972.
Reference: [10] Hewer G. A.: An iterative technique for the computation of the steady-state gains for the discrete optimal regulator.IEEE Tran. on Automatic Control AC-16 (1971), 4, 382-383.
Reference: [11] Štecha J., Kozáčiková A., Kozáčik J.: Solution of matrix equations $PA + A^{T} P = -Q$ and $M^{T}PM - P = -Q$ resulting in Lyapunov stability analysis.Kybernetika 9 (1973), 1, 62-71. MR 0327355
Reference: [12] Kozáčik J.: Algorithms for solution of linear continuous systems with incomplete information about the state of the system.Thesis, ČVUT, Praha 1972.
Reference: [13] Fink M., Štecha J.: Synthesis of linear dynamic systems with incomplete information about the state.Kybernetika 7 (1971), 6, 467-491. MR 0322633
Reference: [14] Bjerhmmar A.: A generalized matrix algebra.Bulletin No. 9 from the Division of geodesy, Stockholm 1958.
Reference: [15] Понтрягин B. C.: Математическая теория оптимальных процессов.Физматизд, Москва 1961. Zbl 1160.68305
Reference: [16] Athans M., Levine W. S.: On the determination of the optimal constant output feedback gains for linear multivariate systems.IEEE Tran. on Automatic Control AC-15 (1970), 1, 44-48. MR 0274138
Reference: [17] Athans M.: The matrix minimum principle.Information and Control 11 (1967), 6, 592-606. Zbl 0176.07301, MR 0228275
Reference: [18] Athans M., Levine W. S., Johnson T.: Optimal limited state variable feedback controlers for linear systems.IEEE Tran. on Automatic Control AC-16 (1971), 6, 785-793.
Reference: [19] Bellman R.: Dynamic programming.Princeton University Press, Princeton 1957. Zbl 0995.90618, MR 0090477
Reference: [20] Liang-Tseng Fan, Chin-Sen Wang: The discrete maximum principle.John Wiley, N. York 1964. MR 0195614
Reference: [21] Lidický J.: Optimal discrete control of linear continuous systems.Thesis, ČVUT, Praha 1971.
.

Files

Files Size Format View
Kybernetika_09-1973-5_5.pdf 629.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo