[1] E. F. Beckenbach, R. Bellman: 
Inequalities. Springer-Verlag, Berlin - Heidelberg - New York 1971. 
MR 0192009 | 
Zbl 0206.06802[2] J. Burbea, C. R. Rao: 
Entropy differential metric, distance and divergence measures in probability spaces: a unified approach. J. Multivariate Analysis 12 (1982), 575-596. 
MR 0680530 | 
Zbl 0526.60015[3] J. Burbea, C. R. Rao: 
On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inform. Theory IT-2S (1982), 489-495. 
MR 0672884 | 
Zbl 0479.94009[5] J.N. Kapur: 
Entropic measures of economic inequality. Indian J. Pure Appl. Math. 17 (1986), 3, 273-285. 
MR 0835340[6] J. N. Kapur: 
On measures of divergence based on Jensen difference. Nat. Acad. Sci. Lett. 11 (1988), 1, 23-27. 
MR 0968334[7] S. Kullback, A. Leibler: 
On the information and sufficiency. Ann. Math. Statist. 22 (1951), 79-86. 
MR 0039968[8] A. W. Marshall, I. Olkin: Inequalities: 
Theory of Majorization and its Applications. Academic Press, New York 1979. 
MR 0552278[9] T. K.  Nayak: Applications of Entropy  Functions in Measurement and Analysis of Diversity. Ph. D.Thesis, Univ. of Pittsburg 1983.
[10] T. K. Nayak, J. L. Gastwirth: The use of diversity analysis to assess the relative influence of factors affecting the income distributions. J. Business \& Economic Statist. 7 (1989), 4, 453-460.
[11] G. P. Patil, C. Taillie: 
Diversity as a concept and its measurement. J. Amer. Statist. Assoc. 7 (1982), 1, 548-567. 
MR 0675883 | 
Zbl 0511.62113[12] C. R. Rao: 
Diversity and dissimilarity coefficients: a unified approach. J. Theoret. Popul. Biology 21 (1982), 24-43. 
MR 0662520 | 
Zbl 0516.92021[13] P.N. Rathie, I.J. Taneja: 
Unified $(r,s)$-entropy and its bivariate measures. Inform. Sci. 45 (1990), 114-121. 
MR 1079200[14] A. Renyi: 
On measures of entropy and information. In: Proc. 4th Berkeley Symp. Math. Statist. Prob. 1 (1961), 547-561. 
MR 0132570 | 
Zbl 0106.33001[15] P. K. Sahoo, A.K.C. Wong: 
Generalized Jensen difference based on entropy functions. Kybernetika 24 (1988), 4, 241-250. 
MR 0961558 | 
Zbl 0667.62003[16] C. E. Shannon: 
A mathematical theory of communication. Bell System Tech. J. 27 (1948), 379-423. 
MR 0026286 | 
Zbl 1154.94303[17] B.D. Sharma, D.P. Mittal: 
New non-additive measures of relative information. J. Combin. Inform. System Sci. 2 (1977), 122-133. 
MR 0476167 | 
Zbl 0439.94006[19] I.J. Taneja: 
Unified measures of information applied to Markov chains and sufficiency. J. Combin. Inform. System Sci. 11 (1986), 99-109. 
MR 0966074[20] I.J. Taneja: On generalized information measures and their applications. Ad. Electronics and Electron Physics 76 (1989), 327-413.
[21] I. J. Taneja L. Pardo D. Morales, M. L. Menendez: 
On generalized information and divergence measures and their applications: a brief review. Qüestiió 18 (1989), 47-74. 
MR 1093611[22] I.J. Taneja L. Pardo, M.L. Menendez: Generalized divergence measures and the probability of error. Communicated.
[23] H. Theil: Economics and Information Theory. North-Holland, Amsterdam 1967.
[24] H. Theil: 
Statistical Decomposition Analysis. North-Holland, Amsterdam 1972. 
Zbl 0263.62066