Previous |  Up |  Next

Article

Title: On Hodges-Lehmann optimality of LR tests (English)
Author: Rublík, František
Language: English
Journal: Kybernetika
ISSN: 0023-5954
Volume: 30
Issue: 2
Year: 1994
Pages: 199-210
.
Category: math
.
MSC: 62F05
MSC: 62F12
idZBL: Zbl 0812.62019
idMR: MR1283495
.
Date available: 2009-09-24T18:46:21Z
Last updated: 2012-06-06
Stable URL: http://hdl.handle.net/10338.dmlcz/124998
.
Reference: [1] R. R. Bahadur: Some Limit Theorems in Statistics.SIAM, Philadelphia, 1971. Zbl 0257.62015, MR 0315820
Reference: [2] L. D. Brown: Non-local asymptotic optimality of appropriate likelihood ratio tests.Ann. Math. Statist. 42 (1971), 1206-1240. Zbl 0247.62008, MR 0314167
Reference: [3] D. G. Herr: Asymptotically optimal tests for multivariate normal distributions.Ann. Math. Statist. 38 (1967), 1829-1844. Zbl 0153.47801, MR 0223004
Reference: [4] J. L. Hodges, E. L. Lehmann: The efficiency of some nonparametric competitors of the $t$-test.Ann. Math. Statist. 27 (1956), 324-335. Zbl 0075.29206, MR 0079383
Reference: [5] W. Hoeffding: Asymptotically optimal tests for multinomial distributions.Ann. Math. Statist. 36 (1965), 369-408. Zbl 0135.19706, MR 0173322
Reference: [6] F. Rublík: On optimality of the LR tests in the sense of exact slopes. II. Application to individual distributions.Kybernetika 25 (1989), 117-135. MR 0995954
Reference: [7] S. Kourouklis: Hodges-Lehmann optimality of the likelihood ratio test in regular exponential families of distributions.TR. No. 73, Dept. of Statistics, The Pennsylvania State University, 1987.
Reference: [8] S. Kourouklis: Hodges-Lehmann efficacies of certain tests in multivariate analysis and regression analysis.Canadian J. Statist. 16 (1988), 87-95. Zbl 0645.62032, MR 0963737
Reference: [9] A. M. Kshirsagar: Multivariate Analysis.Marcel Dekker, New York, 1972. Zbl 0246.62064, MR 0343478
Reference: [10] M. S. Srivastava, C. G. Khatri: An Introduction to Multivariate Statistics.North-Holland, New York 1979. Zbl 0421.62034, MR 0544670
Reference: [11] I. Vajda: Generalization of discrimination-rate theorems of Chernoff and Stein.Kybernetika 26 (1990), 273-288. Zbl 0727.62026, MR 1080281
.

Files

Files Size Format View
Kybernetika_30-1994-2_9.pdf 646.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo